

Aesthetic Programming

A Handbook of Software Studies

Winnie Soon and Geoff Cox

Web https://www.aesthetic-programming.net

Repository https://gitlab.com/aesthetic-programming/book

https://www.aesthetic-programming.net/
https://gitlab.com/aesthetic-programming/book

FrontColophon

AESTHETIC PROGRAMMING
A Handbook of Software Studies

Winnie Soon and Geoff Cox

Published by Open Humanities Press 2020
https://openhumanitiespress.org/

ISBN (print) 978-1-78542-094-8

ISBN (PDF) 978-1-78542-093-1

© CC-BY-SA 2020, the authors

https://openhumanitiespress.org/

Table of Contents

3

Table of Contents

Preface Design notes

1. Getting started

Afterword: Recurrent imaginaries

Table of Contents

2. Variable geometry

3. Infinite loops

4. Data capture

6. Object abstraction

5. Auto generator

8. Que(e)ry data

10. Machine unlearning

7. Vocable code

9. Algorithmic procedures

Bibliography

List of Projects

Acknowledgements

1

2

3

11

13
14
16
17
18
21
22

25

25
25

27

29
30
31
32
33
35
36
37
39
42
44
46
47
47
48

51

53
55
56
58
58
60
62

Aesthetic Programming

FrontColophon

Table of Contents

Preface

– What kind of book is this?
– Why aesthetic programming?
– And software studies?
– Open publishing
– Flow of contents
– The book object
– Notes

Design notes

– Book layout
– Fonts

1. Getting started

– setup()
– start()
– Working environment

– p5.js
– Code editor

– My first program
– Exercise in class

– Reading the web console “Hello World”
– Reading the reference guide
– Git
– While()
– MiniX: RunMe and ReadMe
– Required reading
– Further reading
– Notes

2. Variable geometry

– setup()
– start()
– Source code
– Coordinates
– Exercise in class
– Variables

– Why use variables?

Table of Contents

5

63
63
64
65
66
66
68
69
69
70

71

73
74
75
77
78
79
79
81
83
83
84
86
87
89
89
92
93
94
95
96

97

99
100
101
101

– Other functions
– Conditional structures

– Relational operators
– Basic arithmetic operators
– Discussion in class
– While()
– MiniX: Geometric emoji
– Required reading
– Further reading
– Notes

3. Infinite loops

– setup()
– start()
– Exercise in class (Decode)
– Source code
– Function
– Exercise in class
– Transform

– push() and pop()
– Exercises in class
– Asterisk Painting

– Source code
– Exercise in class
– Arrays
– Conditional statements
– Loops
– While()
– MiniX: Designing a throbber
– Required reading
– Further reading
– Notes

4. Data capture

– setup()
– start()
– Exercise in class (Decode)
– Source code

103
104
105
106
107
110
111
111
112
113
114
115
115
117
118
118
119

121

123
126
127
128
131
133
134
135
136
139
140
140
141

143

145
146
148
149

– DOM elements: creating and styling a button
– Mouse capture
– Keyboard capture
– Audio capture
– Video/Face capture
– Exercise in class
– The concept of capture

– Web analytics and heatmap
– Form elements
– Metrics of likes
– Voice and audio data
– Health tracker

– While()
– MiniX: Capture All
– Required reading
– Further reading
– Notes

5. Auto-generator

– setup()
– start()
– Exercise in class (10 PRINT)
– Langton’s Ant

– Source code (Langton’s Ant)
– Reading Langton’s Ant

– Two-dimensional arrays & nested for-loops
– Exercise in class
– While()
– MiniX: A generative program
– Required reading
– Further reading
– Notes

6. Object abstraction

– setup()
– start()
– Exercise in class (Decode)
– Source code

Table of Contents

7

153
154
158
158
159
160
162
163
163
164

165

167
168
169
171
172
173
175
178
180
181
184
185
185
186

187

189
190
190
191
193
194
196
197
200
201

– Class
– Objects
– Class-Object creation
– Exercise in class
– Further notes
– While()
– MiniX: Games with objects
– Required reading
– Further reading
– Notes

7. Vocable code

– setup()
– start()
– Exercise in class (Decode)
– Textuality

– Type
– Conditional structure
– JSON
– Source code
– Exercise in class
– While()
– MiniX: E-lit
– Required reading
– Further reading
– Notes

8. Que(e)ry data

– setup()
– start()
– Exercise in class
– Image processing: fetching, loading and display
– Source code
– Exercise: accessing web APIs (step by step)
– APIs

– Que(e)rying data
– Exercise in class
– LoadPixels()

204
205
207
208
208
209

211

213
214
214
215
217
217
217
218
220
222
223
223
224

227

229
231
231
232
233
237
238
241
243
243
246
248
248
249

– Different types of bugs
– While()
– MiniX: Working with APIs (in a group)
– Required reading
– Further reading
– Notes

9. Algorithmic procedures

– setup()
– start()
– Discussion in class
– Flowcharts
– Exercise in class

– Exercise 1
– Exercise 2

– Flowcharts as an artistic medium
– While()
– MiniX: Flowcharts
– Required reading
– Further reading
– Notes

10. Machine unlearning

– setup()
– start()
– Between input and output
– Exercise in class
– Learning algorithms
– ml5.js library
– Source code

– Reading Auto Chapter Generator
– Exercise in class
– While()
– MiniX: final project
– Required reading
– Further reading
– Notes

Table of Contents

9

253

261
262
262
263
263
263
264
264
264
265
266
266
267
267
268
269
269
270
272
272
273

275

287

291

295

Afterword: Recurrent imaginaries

– setup()
– start()
– Cyposate
– Source code

– p5.trapgares
– Style()
– Facial literale
– Loaded; the section
– NaveCode

– push and statement
– Exercise in class
– Learning
– Translate then filled respond value areas
– structure
– Omazo
– Open
– While()
– MiniX: Geometric disclmmediated mobinal
– Required reading
– Further reading
– Notes

Bibliography

List of Projects

Acknowledgments

Colophon

Preface

11

Preface

13

14

16

17

18

21

22

Contents

– What kind of book is this?

– Why aesthetic programming?

– And software studies?

– Open publishing

– Flow of contents

– The book object

– Notes

Preface

13

What kind of book is this?

As indicated by its subtitle, this book is meant to be a handbook of sorts, but not in any
conventional sense of it being a prescribed set of technical instructions. 1 It is not meant to
be read to simply learn to code nor to offer critical reflection upon the practice of coding
alone, instead it offers something more messy and at the same time more “useful” we would
say: a book about the more complex and deeply entangled set of relations between writing,
coding and thinking. 2

Most programming books are written with the primary objective of teaching readers how to
learn a programming language to become a good (or better) programmer, with an emphasis
on state-of-the-art technology, as well as practical examples that are explained and then
designed to be deployed in technology-related or creative industries. Not many
programming books address the cultural and aesthetic dimensions of programming as a
means to think and act critically. 3 Emerging trans-disciplinary fields involving
computational technology — such as software studies, platform studies, and digital
humanities to an extent — incorporate the practice of programming into the object of study,
yet little practical detail is provided in terms of putting programming into a critical
perspective, especially for those studying non-technical or non-scientific disciplines. This book
attempts to address this gap between available literature and the growing interest in
“computational thinking” 4 to expand programming beyond the confines of computer
science or software engineering (or even the digital humanities, which ultimately presents
another set of limitations). We consider our approach to be distinctive from other books in
this regard, as well as from other theoretical books in which source code becomes an
illustration of the programmer’s thinking or a too-easy analogy for the hidden layers of
operations (if not ignored altogether).

Whilst operating broadly in the spirit of Software Studies, 5 the book offers an applied and
overtly practice-based approach to understanding the importance of programming —
reading, writing and thinking with software — as a critical tool for our times, in recognition of
the way in which our experiences are ever more programmed. It is offered as a deep learning
“tool” in its widest sense — a handbook for those unaccustomed to programming — that
allows for the programmer’s conceptual skills to develop as they become technically
more proficient.

To reiterate the point, our intention is for readers to acquire key programming skills in order
to read, write and think with, and through, code (and we will return to the issue of literacy
later). We feel that it is important to further explore the intersections of technical and
conceptual aspects of code in order to reflect deeply on the pervasiveness of computational
culture and its social and political effects — from the language of human-machine languages
to abstraction of objects, datafication and recent developments in automated machine
intelligence, for example. In other words, the book embraces both the technical aspects and
formal qualities of code as well as opens up imaginaries of code, including acknowledgment
of the material conditions of programming practice, the non-human agency of code itself,
and its inherent relationality within broader ecologies.

Aesthetic Programming

14

Alongside learning to program, we aim to bridge the gap between theories of computational
culture, aesthetics and cultural studies. As part of this, we take a particular interest in power
relations that are under-acknowledged, such as inequalities and injustices related to class,
gender and sexuality, as well as race and the enduring legacies of colonialism. 6 This is not
only related to our own subject-positions and cultural backgrounds (see our biographies for
more on this) and a politics of representation (the contested space between the subject and
the representation of the subject), but also to how power differentials are implicit in code in
terms of binary logic, hierarchies, naming of attributes, accessibility, and how wider societal
inequalities are further reinforced and perpetuated through non-representational
computation. In short, the handbook introduces and demonstrates a distinctive approach to
the reflexive practice of what we call “aesthetic programming” as we explain and perform it,
and to how it constitutes us as subjects.

Why aesthetic programming?

The argument the book follows is that computational culture is not just a trendy topic to
study to improve problem-solving and analytical skills, or a way to understand more about
what is happening with computational processes, but is a means to engage with
programming to question existing technological paradigms and further create changes in the
technical system. We therefore consider programming to be a dynamic cultural practice and
phenomenon, a way of thinking and doing in the world, and a means of understanding some
of the complex procedures that underwrite and constitute our lived realities, in order to act
upon those realities.

The phrase “aesthetic programming” usefully describes this approach in our opinion. We
claim a certain distinctiveness in this, but of course aesthetic programming is close to other
phrases such as “creative coding” and “exploratory programming” that have been
introduced in related literature in recent years to emphasize the expressivity of computer
programming beyond something pragmatic and functional, in which cultural production, or
critical thinking using the practice of programming, can be developed from the broad
perspective of the arts and humanities. 7 It should be explained that the title “aesthetic
programming” actually derives from one of the undergraduate courses of the Digital Design
degree program at Aarhus University in Denmark, which has been taught in parallel to a
course in Software Studies since 2013. Taken together, as they were designed, these courses
offer ways of thinking with software to understand wider political and aesthetic
phenomena. 8 We follow the principle that the growing importance of software requires a
new kind of cultural thinking, and curriculum, that can account for, and with which to
understand better, from within, the politics and aesthetics of algorithmic procedures, data
processing, and abstracted modeling. The book’s structure largely emerges from the
experience of teaching these courses and we owe gratitude to all our students and fellow
teachers for their valuable contributions and critical feedback along the way. 9

Continuing the discussion of aesthetics, it should be clear that we do not refer to ideas of
beauty as it is commonly misunderstood (aka bourgeois aesthetics), but to political
aesthetics: to what presents itself to sense-making experience and bodily perception

Preface

15

(to paraphrase Jacques Rancière’s The Politics of Aesthetics , as one key reference). 10
How we perceive the world in this political sense is not fixed, but is in constant flux, much like
software itself and bound to wider conditions, and ecologies.

Political aesthetics refers back to the critical theory of the Frankfurt School, particularly to the
ideas of Theodor Adorno and Walter Benjamin, that enforce the concept that cultural
production — which would now naturally include programming — must be seen in a social
context. Understood in this way programming becomes a kind of “force-field” with which to
understand material conditions and social contradictions, just as the interpretation of art
once operated “as a kind of code language for processes taking place within society.” 11
The much-cited essay by Benjamin on technical reproducibility has become a touchstone for
collapsing some myths of artistic production including the dismantling of the aesthetic
experience of “aura” (the mark of an artwork’s authenticity and originality). 12 It is also
worth remembering that Adorno and Benjamin famously disagreed on the consequences of
this destruction of aura: whilst Benjamin expressed the positive aspects of this shift and
viewed the destruction of aura as a kind of political emancipation, Adorno expressed the
negative view that standardization and pseudo-individuality would follow. It would seem that
both tendencies have accelerated with computational culture, hence the continuing need for
sharp critique, and one also based along the lines of “immanent criticism,” that which is
inherent, as it operates within its object, in the inner workings of software and its material
conditions. 13 Yet it remains in question as to what extent these old (white, male)
references are up to the task of unpicking the complexity of computational operations, and
address the ways in which most people use computers or think about them. This is as much
to do with what aesthetic programming is becoming as to what it is or was, and why we still
take our point of departure from such references, also aware that they perpetuate problems
in themselves, and require alternatives.

If everything is in flux, as it would seem, then we also need to be sensitive to our received
methods, based as they are on Western traditions of knowledge production, and notions of
progress, rooted as it is in European colonialism and extraction practices. 14 We find the
work on Anna Lowenhaupf Tsing useful in this regard as it offers a feminist perspective in
which indeterminacy is taken more seriously to reflect the precarity of lived conditions. 15
Not only are our theories of history and technology bound up with this but also critical
practices and other nonhuman imaginaries. Other ecologies open up ways of thinking that
are multidirectional, across times and scales, more open-ended and indeterminate, based on
ideas of “assemblage,” as Tsing puts it. 16 We don’t look to mushrooms for inspiration as
she does, but to the immanent and relational qualities of technology itself. More precisely we
have been working with fundamental programming concepts, such as geometry and object
abstraction; loops and temporality; data and datafication; variables, functions, and their
naming, as well as data capturing, processing and automation, as the starting point for
further aesthetic reflection whereby the technical functions set the groundwork for further
understanding of how cultural phenomena are constructed and operationalized.

Aesthetic programming in this sense is considered as a practice to build things, and make
worlds, but also produce immanent critique drawing upon computer science, art, and cultural
theory. From another direction, this comes close to Philip Agre’s notion of “critical technical
practice,” with its bringing together of formal technical logic and discursive cultural
meaning. 17 In other words, this approach necessitates a practical understanding and

Aesthetic Programming

16

knowledge of programming to underpin critical understanding of techno-cultural systems,
grounded on levels of expertise in both fields (as in the case of Wendy Hui Kyong Chun or Yuk
Hui, for example, who have transdisciplinary expertise 18). Such practical “knowing” also
points to the practice of “doing thinking,” 19 embracing a plurality of ways of working with
programming to explore the set of relations between writing, coding and thinking to imagine,
create and propose “alternatives.” 20 By engaging with aesthetic programming in these
ways, we aim to further “queer” the intersections of critical and technical practices as in the
many examples we refer to in this book (see “List of Projects,” and exemplified by our
references to Winnie Soon’s work throughout), and to further discuss power relations that are
relatively under-acknowledged in technical subjects. We hope to encourage more and more
people to defy the separation of fields and practices in this way.

And software studies?

As stated, we draw heavily upon the field of Software Studies, and to an extent Critical Code
Studies — the work of Wendy Chun, Matthew Fuller, Mark Marino, and others, including our own
earlier work — to deal with and communicate knowledge of software as a cultural form via
analyses of examples of software artefacts and close readings of theoretical texts and
source code. In terms of approach we take our inspiration largely from Fuller’s Software
Studies: A Lexicon from 2008, structured literally as a lexicon of key terms, it in turn taking
its cue from the Raymond Williams’s Keywords: A Vocabulary of Culture and Society
first published in 1958. 21 In many ways, and simply put, our book can be thought of
adopting a similar approach of zooming in to the formal logic of computation and zooming
out to the cultural implications of software. In this respect it is also important to recognize
that the book Software Studies derived from a provisional workshop, and it is worth quoting
the project page for its clarity of intention:

“[T]he project aims at folding the internalist/externalist question of science studies
inside out, the mechanisms of the one conjugating the subject of the other: what
does software-enabled scholarship, in software, art, and literary practice have to say
about its own medium? The purpose of this interaction is therefore not to stage
some revelation of a supposed hidden truth of software, to unmask its esoteric
reality, but to see what it is and what it can be coupled with: a rich seam of
paradoxical conjunctions in which the speed and rationality of computation meets
with its ostensible outside.” 22

We believe that paying attention to fundamental, or key, concepts from programming
provides the opportunity to open up new insights into aesthetics and critical theory, as well
as new perspectives on cultural phenomena increasingly bound to computational logic.
In this way, although aware that we inhabit the problem, we think it important to work in this
way, from the inner workings of software and its material conditions. By extending the
discussion beyond formal logic to its outside, we also emphasize the usefulness of artistic
practice for opening up more speculative, alternative, and messy imaginaries. In this spirit,
and in keeping with the development of software studies in Europe at least, we take
inspiration from what has been referred to as “software art” (although admittedly the

Preface

17

category was only meant as a placeholder) or “computational art.” 23 That we draw upon
examples from artistic (and critical design) practices as part of our argument, stresses our
point that programming is not simply a practical tool that produces an artwork, but is a
critical-aesthetic object 24 in itself. Curator Inke Arns neatly clarifies this:

“‘Software art’ […] refers to artistic activity that enables reflection of software (and
software’s cultural significance) within the medium – or material – of software. It does
not regard software as a pragmatic aid that disappears behind the product it
creates, but focuses on the code it contains – even if the code is not always explicitly
revealed or emphasized. Software art, according to Florian Cramer, makes visible the
aesthetic and political subtexts of seemingly neutral technical command sequences.
Software art can base itself on a number of different levels of software: source code
level, abstract algorithm level, or on the level of the product created by a given
piece of code.” 25

We would argue something similar for this book. Moreover, in order to discuss the aesthetic
dimensions of code and computational processes, we incorporate artistic works that explore
the material conditions of software and the operations of computational processes as
practical and theoretical examples. They are an integral part of our argument in other words,
as well as serve to demonstrate some of the ideas in practice and offer unexpected
epistemic insights. We might add, repeating what has already been introduced, that we are
not simply interested in a critical aesthetics of programming but also programming as
critical aesthetics.

Open publishing

More to the point, text is in code (in the ways that it is made human-readable) and code is in
text (in the use of the text editor, interfaces and online platforms we use to render these
thoughts). There is more to say on this, and we will return to these issues across the various
chapters of the book, each following the logic of fundamental programming concepts. Suffice
to say for now, that the book sets out to express how writing and coding are deeply
entangled, and how neither should be privileged over the other: we learn from their
relationality. Writing code and writing about code are forced together in ways that reflect
broader cultural and technical shifts in data practices and open publishing initiatives, and,
moreover, emphasize that writing a book is necessarily a work in progress. Like software, this
is a book to be read, and acted upon, shared and rewritten.

There are clearly many precedents for such an overtly collaborative approach to software
production, and clearly, free and open source principles underscore our thinking. It is worth
emphasizing that FOSS development is a collective practice that challenges the normative
relations of production associated with commercial development, such as a narrow definition
of authorship and copyright, and fixed divisions of labor, which can be extended to the
production of books and the associated reputation economy of academic publishing.
However, we also recognize that the release of source code and open access books
represents a number of ambiguities related to the sharing economy, free market capitalism,

Aesthetic Programming

18

and opportunities to capitalize on free labor. We persist in the hope that our efforts challenge
reductive logic, and our publisher, Open Humanities Press, broadly reflects FOSS principles of
transparency and reproducibility in its commitment to open access for scholarly work. 26
As such, this book can be downloaded for free or purchased as a hard copy at a
reasonable price.

This is nothing particularly original. We acknowledge there are numerous other experimental
publishing initiatives and even “anti-platforms” for decentralized article publishing. 27 There
are also plenty of other examples that have picked up on the perversity of writing books
about programming where you have to type out the examples to run them, and live coding
platforms demonstrate alternatives (e.g. Jupyter Notebook or DevDocs 28). Our use of print
and an associated software repository is our way of managing this problem. This has also
informed our choice of designers for the book: Open Source Publishing collective (OSP)
design using only free and open source software — “pieces of software that invite their users
to take part in their elaboration,” as they put it 29 — and make all files freely available using
a Git versioning system that contains all the files for the project, distributed under the terms
of Version 2 of the GNU General Public License. The following chapter introduces this in
more detail.

In brief, the use of a Git repository for our writing further emphasizes FOSS working principles,
and, by treating writing as software, or indeed software as writing, allows us to formalize the
production of the book as an iterative process, in need of timely updates, allowing for forking
and endless reversioning. By allowing new versions to be produced by others, we hope in a
modest way to challenge commercial publishing conventions and illuminate our capacity to
understand some of the infrastructures through which we encode our ideas and distribute
them across networks. We believe that this way of working marks a departure point for
collectively engaging with programming and creating changes in the social-technical
systems (both inside and outside). We aim to do something similar to what Adrian Mackenzie
has identified as “auto-archaeology” to indicate how the object of study is fully integrated
into the analysis, which he demonstrated using the associated GitHub site for his 2017 book
Machine Learners . 30 This helps us as readers to understand something of the iterative
process of writing a book about code in the spirit of how software developers collaborate,
host, review, and merge code, as well as build software together. 31

Flow of contents

Throughout this book, we use JavaScript as the main programming language with a primary
focus on the open source and web-based library called p5.js, which already comes with a
comprehensive and accessible resource for beginners to learn programming (more details
will be included in chapter 1, “Getting started”). Our resource combines the aquisition of
technical knowledge as a necessary part of doing critical work, all part of learning to program
in its widest sense, programming as doing and thinking, as world-making.

Each chapter of the book starts with a flowchart 32 to provide a “diagram” of entangled
relationships between the formal/technical and aesthetic/conceptual aspects of its
contents. Each captures the dynamic (learning) processes in both concrete and abstract

Preface

19

representation for thinking with, especially the relations between the stage setup as
expressed in the section “setup(),” starting point as expressed in “start(),” artefacts and
sample code as expressed in “Source code,” formal and discursive activities concerning code
and syntax as expressed in “Exercises and discussion in class,” and the further extended
discussion as expressed in “While().” If a flowchart is conventionally used as an aid to the
design of computational processes both for technical understanding and
communication, 33 then we also consider critical reflection to be an integral part of that
process. Indeed, the flowchart serves as the starting point to exemplify our approach of
turning concepts “inside out” and the need to understand computational and programmable
objects, relations, and processes in both logical and discursive forms.

Beginning with the first chapter, “Getting started,” we illustrate the tools and environments
that are required to use the book. The chapter is a guide to making your first program as a
means to think through the notion of literacy, both in terms of writing code (RunMe) and
writing about code (ReadMe). Chapter 2, “Variable geometry,” explores the use of variables,
and the drawing of geometric shapes, sizes, positions, space, and so on, to connect to the
discussion of emojis and the politics of representation they invoke. Chapter 3, “Infinite
loops,” moves from static to moving objects using different syntaxes for transformation.
Using the graphical spinning wheel icon of a preloader, we learn about conditional
statements, loops, and time-related syntaxes, to reflect on how technologies play a crucial
role in our experience of time. Chapter 4, “Data capture,” introduces how a program
captures and processes input data (via audio and webcam devices, mouse and keyboard
press, as well as customizable and clickable buttons), and further discusses the
consequences of capture and datafication. Chapter 5, “Auto-generator,” focuses on how
rules and instructions are performed, and how they can produce unexpected and/or
complex results in generative systems, and produce emergent/queer life forms. At this
point the book becomes more technically complex, and chapter 6, “Object abstraction,”
introduces object-oriented programming in which customizable properties and behaviors of
objects are introduced, alongside a discussion of the movement between abstract and
concrete reality. Chapter 7, “Vocable code,” pays close attention to notation and
computational structure, exploring the poetic relationships between program code and
natural language. With a particular focus on voice, we reflect on how the human subject is
implicated in coding practices and how coding itself can voice wider political issues.
Engaging with the real-time query of an Application Programming Interface (API), chapter 8,
“Que(e)ry data,” takes a closer look at how to request and acquire data, exploring how
information processing is coupled with data selection, normalization, extraction,
transmission, and presentation. As such, we gain an insight into the politics of a query-
driven society and the ways in which search engines produce knowledge in compromized
forms. Working towards the end of the book, chapter 9, “Algorithmic procedures,” does not
focus on code syntax, but instead how we can break down the procedural operations of an
algorithm into a logical form. It introduces flowcharts as a means to unfold the practical
and conceptual aspects of algorithms, and to explore the political consequences of
procedural operations (a strategy adopted to map each chapter, as mentioned above). The
last chapter, “Machine unlearning,” introduces machine learning algorithms to explore the
implications of training, teaching, and learning in general, drawing together many of the
issues across the chapters, and operating as a further reflection on the purpose of the book
as a learning tool. But this is not simply didactical, and we offer a bonus chapter in the form
of an “Afterword: Recurrent Imaginaries,” a machine-generated chapter based on the

Aesthetic Programming

20

contents of the book, on what has been learnt, and what might be unlearnt. In summary,
the first six chapters set up the ground from which to understand the fundamental
elements of programming, and the last four chapters build upon this towards more
speculative forms and imaginaries.

Creative practice is at the forefront of our approach. Every chapter comes with an example
that utilizes different technical syntax, facilitating the discussion of the formal aspects of
code. But beyond that, we also have experienced in our teaching that students, especially
beginners, have difficulty in putting different functions together in a sketch. Although each
chapter builds on others, we have found that it is important to repeat the use of syntax and
to show how different functions and syntax can be combined and used in multiple ways. Most
individual functions can be found using the p5.js reference page or are available in other
instructional online videos, 34 however we stress the importance of how to bring making
and thinking together. Our examples are developed with this in mind and increase complexity
across the chapters, and each sketch has around one hundred lines of code for relative ease
of comprehension. It should be said that we do not take effective and efficient code to be a
priority here and sometimes twist the expected use of syntax accordingly. Indeed we do not
aim to offer a comprehensive list of the core p5.js functions like many other programming
books, but rather we offer ways of explaining the syntax according to the examples that we
have selected and for their ability to generate further discussion. Our examples, inspired by
other artists, designers, scientists and theorists, are custom-made according to the
perceived pace of learning and their critical potential, with the incorporation of syntax and
features that are closely aligned to the corresponding focus of the chapter. Examples are
thus provided to spark both the technical and conceptual discussion in and outside of the
classroom, including the mini exercises (aka “miniX”) that we have set out for each chapter.

Using the dual elements 35 of “RunMe” and “ReadMe” to cultivate reflection by writing code
and writing about code, students are encouraged to question the application of their learning
in the making of artefacts. Using the pedagogic principle of “low floors, high ceilings,” 36
students can easily get started with the materials in the book but each miniX also
encourages independent learning by addressing the theme openly instead of looking for a
prescribed outcome. We introduce various set and open tasks as well as questions
throughout the chapters to test the limits of what is known at any point in time. When it
comes to practice and iterative learning, we have also included peer-feedback for every miniX
so as to encourage peer learning through reading other people’s code, 37 and to further
emphasize the diversity of approaches as well as the value of sharing ideas in public, like a
shared recipe. The analogy to cooking is something we have adopted in the book by making
conceptual parallels between, for example, variables and kitchen containers, algorithms and
recipes, and so on. We take inspiration here from our book designers Open Source Publishing
who have extensive experience of running workshops for beginners, and adopt their use of
kitchen metaphors: drawing together practices of coding and cooking, tasting and testing, to
invite further experimentation with various ingredients: “In the OSP kitchen, source files =
ingredients.” 38

What we have attempted to outline follows the principle of “situated knowledge,” in the
sense that what we offer reflects the particular conditions in which it was produced, and the
situatedness of the knowledge producers (us, as well as the students we have worked
with). 39 Specifically, the book has been developed over the past five years through the

Preface

21

actual setting of classroom teaching and assignments, in a very specific cultural and
educational context, situated within an educational degree program in the humanities with a
focus on software studies. Students mostly have had no prior programming experience. The
course has run for fourteen classes with blocks of eight and three contact hours every week —
for Aesthetic Programming and Software Studies respectively. Though we offer ten main
chapters here, in practice 40 we provide a “pause week” to slow things down by not
introducing new functions and syntaxes, instead revisiting previous ones and discussing what
constitutes aesthetic programming, and how this links to their weekly practice and learning.
We also have project weeks for preparation towards the final assessed submissions. Some
flexibility is recommended if you are following this book for your own curriculum and clearly
the intention is for readers to adapt, modify and re-arrange the contents to suit their
purposes and the particularity of the context in which they work. Our contents are offered as
an open resource, to open up different possibilities for making “cuts” across the various
materials and ideas, 41 and to encourage readers to fork a copy and customize their own
versions, with different references, examples, reflections and new chapters for example, for
further modification and re-use. 42 Thus, adopting the words of Jennifer Gabrys, our project
is “an invitation to make, organize, orchestrate, conjure, and sustain people, technology, and
worlds toward openings rather than prescribed ends.” 43

The book object

Finally we would like to stress that this book is not simply the physical object that you might
be holding in your hands as you read these words, but a computational and networked
object, distributed across various other spaces and temporalities, made available to both
readers and writers alike. In saying this we reference Benjamin again, and his essay “The
Author as Producer” in which he writes: “The reader is always prepared to become a writer, in
the sense of being one who describes or prescribes. […] And writing about work makes up
part of the skill necessary to perform it. Authority to write is no longer founded in a specialist
training but in a polytechnical one, and so becomes common property.” 44 Interestingly, for
Benjamin, as with this book, cultural production requires a pedagogic function.

That is precisely our point. The book expresses itself as a dynamic object not fixed in terms
of attribution or commodity form or specific determination. It follows that, although this
preface is only the beginning of the book, there can be no end: this book is purposefully
stuck in an endless loop of its own becoming.

Aesthetic Programming

22

Notes

1. The casual address “for dummies” could
also be used, as it has been for many
technical books, but this carries the
unfortunate connotation of learning
disability.

2. The book aims to provide some “useful
knowledge.” Here we refer to nonstandard
literacy, such as in the article: Marilyn M.
Cooper, “Really Useful Knowledge: A
Cultural Studies Agenda for Writing
Centers,” The Writing Center Journal
14, N°2 (Spring 1994): 97-111, https://jsto
r.org/stable/43441948.

3. Mark Guzdial suggests there are other
purposes for programming beyond the
normative focus on economic impact and
the development of professionals for the
software industry that open up various
possibilities for learning and teaching
programming. See Mark Guzdial,
“Computing for Other Disciplines,” in The
Cambridge Handbook of Computing
Education Research , Sally A. Fincher and
Anthony V. Robins, eds. (Cambridge:
Cambridge University Press, 2019), 584, ht
tps://doi.org/10.1017/9781108654555.0
20.

4. Seymour Papert’s influential book
Mindstorms from 1980 introduced
computing to children’s learning. He
coined the term “compututional thinking”
to emphasize the practice of constructing
procedures with the early programming
language Logo (which does not simply
use software as a tool), aiming to bridge
the gap between mathematics, the
culture of science and education as well
as social critique. Donald Knuth made the
concept of literacy more apparent in the
book Literate Programming and
considered a program literature which
involves viewing programming languages
as natural languages for human readers.
In recent years the notion of
computational thinking was also picked
up by scholars in the field of software
studies, such as David Berry, Matthew
Fuller, Nick Montfort and Annette Vee. See
Seymour Papert, Mindstorms;
Children, Computers and Powerful
Ideas (New York: Basic Books, 1980);
Donald Ervin Knuth, Literate
Programming CSLI Lecture Notes, N°27
(Stanford, CA: Center for the Study of
Language and Information, 1992);
Jeannette M. Wing, “Computational
Thinking,” Commun. ACM 49, N°3
(March 2006): 33–35; Michael, Mateas,
“Procedural Literacy: Educating the New
Media Practitioner,” Horizon 13, N°2
(June 1, 2005): 101–11; David M. Berry, and
Anders Fagerjord, Digital Humanities:
Knowledge and Critique in a Digital
Age (Hoboken, NJ: John Wiley & Sons,
2017); Matthew Fuller, How to be a
Geek: Essays on the Culture of
Software (Cambridge: Polity Press,
2017); Nick Montfort, Exploratory
Programming for the Arts and
Humanities (Cambridge, MA: MIT Press,
2016); Annette Vee, Coding Literacy:
How Computer Programming Is
Changing Writing (Cambridge, MA: MIT
Press, 2017); Ole Sejer Iversen, Rachel
Charlotte Smith and Christian Dindler,
“From computational thinking to
computational empowerment: a 21st
century PD agenda,” Proceedings of the
15th Participatory Design Conference
Full Papers - Volume 1 , N°7 (August
2018): 1-11.

5. Software studies is an interdisciplinary
research field that studies software and
its social and cultural effects, see Matthew
Fuller, ed. Software Studies: A Lexicon
(Cambridge, MA: MIT Press, 2008).

6. See, for instance, Syed Mustafa Ali’s “A
Brief Introduction to Decolonial
Computing,” XRDS: Crossroads, The
ACM Magazine for Students 22, N°4
(2016): 16–21.

7. Here we are referring to John Maeda,
Creative Code: Aesthetics +
Computation (London: Thames &
Hudson, 2004); Kylie A. Peppler and
Yasmin B. Kafai, “Creative coding:
Programming for personal expression,”
The 8 th International Conference on
Computer Supported Collaborative
Learning (CSCL) 2 (2009): 76-78;
Montfort, Exploratory Programming
for the Arts and Humanities ; Noah
Wardrip-Fruin, Expressive Processing:
Digital Fictions, Computer Games,
and Software Studies (Cambridge, MA:
MIT Press, 2012).

8. Our blend between formal logic and
conceptual thinking is designed to open
up space for further reflection. As one of
our students commented in 2018,
“Aesthetic Programming was not just
programming 1.1, but instead a much
more reflective and critical course.” And
from student feedback from the 2019
course, a student commented that the
course structure provides “a hands-on
experience with coding as a practice as
well as a theoretical approach. […] It was
great to see behind the code and try to
decode the greater picture in a digital
culture context.”

9. Special mention should be made of
Magda Tyżlik-Carver and Christian Ulrik
Andersen who have contributed to the
teaching of these courses, as well as
teaching assistants including Frederik
Westergaard, Nils Rungholm Jensen,
Tobias Stenberg, Malthe Stavning Erslev,
Ann Karring, Simone Morrison, Nynne
Lucca Christianen, Ester Marie Aagaard,
and Noah Aamund.

10. Jacques Rancière, The Politics of
Aesthetics (London: Continuum, 2006),
investigates what aesthetics and politics
have in common: according to Rancière,
the delimitation of the thinkable and the
unthinkable, the possible and the
impossible.

11. The quote continues, “which must be
deciphered by means of critical analysis,”
in Martin Jay, Aesthetic Theory
(Minneapolis, MN: University of Minnesota
Press, 1996), 177.

https://jstor.org/stable/43441948
https://doi.org/10.1017/9781108654555.020

Preface

23

12. To quote Benjamin on this point: “The
instant the criterion of authenticity ceases
to be applicable to artistic production, the
total function of art is reversed. Instead of
being based on ritual, it begins to be
based on another practice - politics.”
Walter Benjamin, “The Work of Art in the
Age of Mechanical Reproduction” [1936],
Selected Writings, Volume 3, 1935–
1938, Howard Eiland and Michael W.
Jennings, eds. (Cambridge, MA: Belknap
Press of Harvard University Press, 2002).

13. Adorno says it better: “A successful work
of art, according to immanent criticism, is
one that resolves objective contradictions
in a spurious harmony, but one expresses
the idea of harmony negatively by
embodying the contradictions, pure and
uncompromised, in its innermost
structure” (Adorno, in Prisms (1967), 32;
quoted in Jay, Aesthetic Theory , 179).

14. Black and indigenous aesthetics would
make an important addition here, such as
found in Ron Eglash’s African Fractals ,
as would reference to Afrofuturism, not to
simply insert black voices into racist
historical narratives, but to envision new
imaginative forms. See, Ron Eglash’s
African Fractals: Modern Computing
and Indigenous Design (New
Brunswick, NJ: Rutgers University Press,
1999), and, for instance, Kodwo Eshun’s
“Further Considerations on Afrofuturism.”
CR The New Centennial Review 3,
no.2 (2003): 287-302.

15. Anna Lowenhaupf Tsing, The Mushroom
at the End of the World: On the
Possibility of Life in Capitalist Ruins
(Princeton: Princeton University Press,
2015).

16. Tsing, The Mushroom at the End of
the World , 23.

17. Philip E. Agre, “Toward a critical technical
practice: Lessons learned in trying to
reform AI,” in Geoffrey Bowker, Susan
Leigh Star, William A Turner, William Turner,
Les George Gasser, eds., Bridging the
Great Divide: Social Science, Technical
Systems, and Cooperative Work (ACM
Digital Library, 1997). https://dl.acm.or
g/doi/book/10.5555/549261.

18. Wendy Chun has studied both Systems
Design Engineering and English Literature,
which she combines and mutates in her
current work, see https://en.wikipedia.or
g/wiki/Wendy_Hui_Kyong_Chun. Yuk Hui
studied both Computer Engineering and
Philosophy, see http://digitalmilieu.net/
yuk/.

19. The notion of “doing thinking” suggests
non-standard ways of knowing that draws
upon artistic research and
technofeminism in computing. See Loren
Britton, Goda Klumbyte, and Claude
Draude, “Doing Thinking: Revisiting
Computing with Artistic Research and
Technofeminism.” Digital Creativity 30,
N°4 (October 2, 2019): 313–28, https://do
i.org/10.1080/14626268.2019.1684322.

20. Agre, “Toward a critical technical
practice”.

21. Fuller, ed. Software Studies ; Raymond
Williams, Keywords: A Vocabulary of
Culture and Society (London: Fontana,
1983); updated by Blackwell in 2005 as
New Keywords: A Revised
Vocabulary of Culture and Society .

22. The project workshop description an be
found archived at https://web.archive.or
g/web/20100327185154/http://pzwart.
wdka.hro.nl/mdr/Seminars2/softstudw
orkshop.

23. We were highly influenced by the series of
Readme festivals that promoted the
artistic and experimental practice of
software, which took place at the Marcros-
Center in Moscow (2002), Media Centre
Lume in Helsinki (2003), Aarhus University
and Rum46 in Aarhus (2004), and HMKV in
Dortmund (2005). The associated
software art repository Runme.org was
established in 2003, and many
participants and people who submitted
their works did not necessarily call
themselves artists. Indeed the category
of art in itself becomes inadequate to
cover the kinds of creatives practices that
have developed in the field. As an annual
festival for art and digital culture,
transmediale had started to use ‘artistic
software’ or ‘software art’ from 2001-2004.
Many artists and researchers have
contextualized and written about the
genre of software art, see Florian Cramer,
and Ulrike Gabriel, “Software Art,”
American Book Review, issue
“Codeworks”(Alan Sondheim, ed.) (2001);
Goriunova, Olga, and Alexei Shulgin.
read_me: Software Art & Cultures
(Aarhus: Aarhus Universitetsforlag, 2004);
Andreas Broeckmann, “Software Art
Aesthetics,” Mono 1 (2007): 158-167.

24. The field Critical Code Studies (CCS)
makes this explicit, promoting the
examination of source code as a cultural
object for critical analysis. As Mark Marino
suggests that CCS pays attention to code
as textual materials and its main
argument is that code itself can be
considered as a “cultural text worthy of
analysis and rich with possibilities for
interpretation”, and furthermore, code
allows one to reflect “on the relations
between the code itself, the coding
architecture, the functioning of code, and
specific programming choices or
expressions, to that which it acts upon,
outputs, processes, and represents”. See
Mark C. Marino, “Critical Code Studies”,
Electronic Book Review (December 4,
2006); “Field Report for Critical Code
Studies,” Computational Culture 4 (9th

November 2014), http://computationalc
ulture.net/field-report-for-critical-code-stu
dies-2014%e2%80%a8/; Mark C. Marino,
Critical Code Studies (Cambridge, MA:
MIT Press, 2020).

25. Inke Arns, “Read_me, run_me,
execute_me: Code as Executable Text:
Software Art and its Focus on Program
Code as Performative Text,” trans. Donald
Kiraly, MediaArtNet (2004), http://ww
w.mediaartnet.org/themes/generative-t
ools/read_me/1/.

26. For more on Open Humanities Press, see
https://openhumanitiespress.org/.

27. For instance, dokieli is a client side editor
for decentralized article publishing,
annotations and social interactions, see ht
tps://dokie.li/.

28. See https://jupyter.org/ and https://d
evdocs.io/javascript/.

29. For more on Open Source Publishing
(OSP), see http://osp.kitchen/about.
We are interested in this approach as it
somewhat breaks down the divisions of
labor associated with traditional
publishing in which writing, editing, and
designing, and the people that perform
these tasks, are distanced from each
other.

30. See Adrian Mackenzie’s “Preface” to
Machine Learners: Archaeology of a
Data Practice (Cambridge, MA: MIT
Press, 2017); and on GitHub at https://gi
thub.com/datapractice/machinelearner
s.

https://dl.acm.org/doi/book/10.5555/549261
https://en.wikipedia.org/wiki/Wendy_Hui_Kyong_Chun
http://digitalmilieu.net/yuk/
https://doi.org/10.1080/14626268.2019.1684322
https://web.archive.org/web/20100327185154/http://pzwart.wdka.hro.nl/mdr/Seminars2/softstudworkshop
https://electronicbookreview.com/essay/critical-code-studies/
http://computationalculture.net/field-report-for-critical-code-studies-2014%e2%80%a8/
http://www.mediaartnet.org/themes/generative-tools/read_me/1/
https://openhumanitiespress.org/
https://dokie.li/
https://jupyter.org/
https://devdocs.io/javascript/
http://osp.kitchen/about
https://github.com/datapractice/machinelearners

Aesthetic Programming

24

31. As a dynamic repository Git collapses the
distinction between storage and
production. For more on Git, see Matthew
Fuller, Andrew Goffey, Adrian Mackenzie,
Richard Mills and Stuart Sharples, “Big Diff,
Granularity, Incoherence, and Production
in the Github Software Repository,” in
Matthew Fuller, How To Be a Geek:
Essays on the Culture of Software
(Cambridge: Polity Press, 2017).

32. The flowcharts for each chapter are
programmed with Graphviz, open source
software for graph visualization. All the
source code is provided in the folder
“graphviz” on the GitLab repository. See h
ttps://graphviz.org/.

33. Stephen Morris and Orlena Gotel, “The
Role of Flow Charts in the Early
Automation of Applied Mathematics,”
BSHM Bulletin: Journal of the
British Society for the History of
Mathematics 26, N°1 (March 2011): 44–52,
https://doi.org/10.1080/174984309034
49207.

34. We extend our appreciation to the many
educators’ various ways of presenting
code which this book was built on. In
particular, we would like to acknowledge
and thank Daniel Shiffman for his The
Coding Train YouTube channel that
offers excellent creative coding tutorials
for us and our students to learn
programming in an accessible manner.
Since the basics are clearly covered in the
instruction videos, students subsequently
find it easier to digest the materials in this
book providing room for alternative forms
to take place.

35. Here we once again reference the series of
Readme festivals, as well as the
Runme.org software art repository, htt
p://runme.org/.

36. A concept first formulated by
mathematician, computer scientist, and
educator Seymour Papert, MIT Professor,
who created a design principle for a
programming language called Logo. See
Seymour Papert, Mindstorms:
Children, Computers, and Powerful
Ideas (New York: Basic Books, 1980).

37. The field of Critical Code Studies considers
source code a cultural text for critical
reading and interpretation beyond the
understanding of how this code works
technically and functionally. See Marino,
Critical Code Studies .

38. See OSP’s home page and note the URL:
http://osp.kitchen/.

39. By “situated knowledge,” we refer to the
work of Donna Haraway, and others
broadly in the field of feminist new
materialism, to think outside of spurious
universal and objective forms of
knowledge. See Donna Haraway,
“Situated Knowledges: The Science
Question in Feminism and the Privilege of
Partial Perspective.” Feminist Studies 14,
N°3 (1988): 575-599.

40. You can find the curriculum and the messy
notes for recent years’ Aesthetic
Programming courses here: https://gitla
b.com/siusoon/aesthetic-programmin
g/-/tree/master/.

41. We are referring to feminist new
materialism here, and in particular Karen
Barad’s thinking, cutting
“together/apart” how-to guides, across
the fields of computer science, art,
cultural studies, critical theory, and
software studies. See Karen Barad,
Meeting the Universe Halfway:
Quantum Physics and the
Entanglement of Matter and
Meaning (Durham, NC: Duke University
Press, 2007).

42. The whole repository, including the text,
source code for all sample code and
flowcarts, is currently hosted on GitLab as
an open source project with a Creative
Commons License. You are encouraged to
fork or clone a copy if you have a GitLab
account or download the whole repository
(by pressing the icon of the download
button). See https://gitlab.com/siusoo
n/Aesthetic_Programming_Book.

43. Jennifer Gabrys outlines her “how-to”
approach in the “Introduction” to How to
Do Things with Sensors (Minneapolis,
MN: University of Minnesota Press, 2019).
We’d like to think we were doing
something along these lines too.

44. Walter Benjamin, “The Author as
Producer” [1935], quoted in Geoff Cox and
Joasia Krysa, eds. Engineering Culture:
On the Author as (Digital) Producer
(New York, Autonomedia, 2005), 22.

https://graphviz.org/
https://doi.org/10.1080/17498430903449207
http://runme.org/
http://osp.kitchen/
https://gitlab.com/siusoon/aesthetic-programming/-/tree/master/
https://gitlab.com/siusoon/Aesthetic_Programming_Book

Design notes

25

Design notes

Book layout

Since 2013, Open Source Publishing (OSP) makes printed publications with web technologies:
HTML, CSS, and Javascript. The use of these technologies allows for new kinds of layout and
new publication pipelines where multiple output formats (website, book, ebook) can be
produced based on the same content. The contents of this book were written in the
Markdown markup language and synchronized between the authors and designers using Git,
a collaborative tool. The sources were then transformed into HTML with Pelican CMS. The web
version lets the reader view and live test the sample codes of each chapter. For the printed
version of the book, the polyfill paged.js was used to augment browser support for styling
paged media with CSS. Both versions are independent and complementary.

Fonts

All fonts of the book have been chosen because they were drawn with code.

Body and headers fonts used in this book are part of a larger font family drawn by
A.V. Hershey in the 1960s and were developed specifically for vector plotters. Limited by the
technical limitations of these plotters, curves are segmented into small, straight lines.
Furthermore, as vector plotters draw using a single line width, varying line thickness is
simulated by placing lines close to each other. The specific variants displayed in the book
were reinterpreted with Metafont. The body fonts are from the Hershey Noailles family,
interpreted by Antoine Gelgon, transforming the segmented curves into real curves. The
Hershey Times in the headers was interpreted by Gijs de Heij and Simon Egli, (ab-)using
Metafont’s “most pleasing curve” to generate its particular shapes.

The code samples are set in OCR-pbi, a font family drawn with Metafont by Antoine Gelgon.
The skeleton of this font is based on the OCR-B, drawn by Adrian Frutiger in an effort to draw
a monospace font readable by both machines and humans.

https://blog.getpelican.com/
https://www.pagedjs.org/

1. Getting started

27

1. Getting started

1. Getting started

setup()

Required reading

start()

While()

Working environment My first program

p5.js

Code editor

Git

Reading the
reference guide

Exercise in class Reading the web console
'Hello World'

MiniX:
RUNME and READMENotes

Further reading

29

30

31

32
33
35

36

37
39

42

44

46

47

47

48

Contents

– setup()

– start()

– Working environment

– p5.js
– Code editor

– My first program

– Exercise in class

– Reading the web console “Hello World”
– Reading the reference guide

– Git

– While()

– MiniX: RunMe and ReadMe

– Required reading

– Further reading

– Notes

1. Getting started

29

setup()

It has become commonplace to include programming in educational programes at all levels
and across a range of disciplines. Yet this still remains relatively uncommon in the arts and
humanities, where learning to program does not align explicitly with the related career
aspirations. This raises questions about what does or doesn’t get included in curricula, why
this may be the case, and which knowledge and skills are considered essential for some
subjects and not others. Certain forms of privilege (related to class, gender, race) are clearly
affirmed in these choices. For instance, in very general terms, “high culture” has traditionally
been described as the domain of university-educated (wealthy, white) people, whilst “low
culture” the domain of non-university-educated (working class) ordinary people. Neither high
nor low culture, programming cuts across this class divide as both an exclusive and
specialized practice 1 that is also one rooted in the acquisition of skills with applied real-
world use in both work and play. Yet, despite its broad applicability, access to the means of
production at the level of programming remains an issue all the same.

We might usefully characterize this in terms of literacy — traditionally applied to the skills of
reading and writing — and to further include the reading and writing of code. Indeed coding is
often referred to as “the literacy of today,” and as the twenty-first century skill “we must then
learn to master [sic].” 2 Arguably, knowing some basic coding skills will not only enhance
future employability, but will also enable the improved understanding of how things (codes)
are “encoded” and “decoded.” 3 Further echoing cultural studies, and its foundations in an
expanded notion of literacy to include aspects of ordinary culture, Annette Vee’s book
Coding Literacy from 2017 is an attempt to shift our focus from technical skill to wider
social relations. As she puts it, “Seeing programming in light of the historical, social, and
conceptual contexts of literacy helps us to understand computer programming as an
important phenomenon of communication, not simply as another new skill or technology.” 4

So, what are the implications of coding framed in terms of literacy, and to whom does this
apply? Although Vee’s book is not a programming book and does not address the question
of how to program, it weaves together parallel histories of writing and coding to compare
and trace what is meant broadly by literacy, and how to understand the rise of computing
and the cultural discourse around the importance of code and coding. Indeed, it has become
common to discuss writing and coding, text and code in parallel, especially in the fields of
electronic literature, digital humanities, and software studies. 5 (This parallel is also
something we will develop in more detail in Chapter 7, “Vocable code.”) It applies to all of us.
We hope that something of this expanded coding literacy is facilitated by reading and using
this book, and we take inspiration from Vee’s arguments for coding literacy, in that it is no
longer just “reading for comprehension” but also “reading for technical thought as well as
writing with complex structures and ideas.” 6 It is not simply a new way of reading and
writing, but also a new way of thinking and understanding other codes. Such a compelling
argument for literacy not only benefits individuals who acquire certain skills, but also has
potential wider cultural and social ramifications, helping to force coding out of its
specialization in certain disciplines and open up its critical and aesthetic potential.

Aesthetic Programming

30

Figure 1.1: p5.js web interface

In 2016, Nick Montfort, a poet and academic, published Exploratory Programming for
Arts and Humanities , a hands-on approach to programming. In the appendix, in response
to the question “Why Program?” he outlines three key reasons 7 : learning to program
allows us to think in new ways by introducing different methods and perspectives to raise
new questions; programming offers us a better understanding of culture and media systems,
subsequently allowing us to learn to develop better, or better analyze, cultural systems; and,
finally, programming can help us improve society by creating, designing, and discovering
programs. In general, we agree with Montfort on these points, but at the same time we see
this as a means to open up different working methods, and, using programming as a basis
for our thoughts, to speculate on alternative forms and political imaginaries of
programming practice.

This opening chapter introduces some ideas and exercises to get started (the setup() so to
speak) and reflects on why we need to learn to program. We hope this will help sustain
motivation across subsequent chapters. In addition as we imagine that our readers do not
necessarily want to become professional programmers, we stress programming as a means to
think differently (as we tried to outline in the Preface). This applies to us too and we have learnt
from others along the way, challenging our preconceptions, especially through the experience of
working with students with little or no programming experience. Learning to code can be
enjoyable and rewarding, but also annoying and frustrating, especially when complex syntax
and structure are involved. It takes time to familiarize oneself with precise, unforgiving
computational logic, and procedures, but hopefully the case for the importance of learning to
program has been established by now. The choice is simple: “to program or be programmed.” 8

start()

Throughout the book, we will use JavaScript as the
main programming language, primarily focusing on
p5.js and its associated libraries. Practically speaking,
p5.js is a web-based library, 9 that utilizes an open
source JavaScript framework that makes creating
projects with code on the web accessible, as well as
much easier to share via the Internet, such as p5.js
Web Editor, Open Processing, and Git hosting
platforms, without additional installation. A
JavaScript-based project can be run and executed
using a URL in a browser.

JavaScript was originally developed in 1995 by
Brendan Eich with the aim to run a program in the Netscape browser. 10 Some people
might be confused with the difference between JavaScript and Java, but basically they are
two different systems. JavaScript is a lightweight programming language which is commonly
used for animated visual and interactive web applications, and was originally designed to
enhanced interface experiences, and to complement Java. Indeed, program code from any
“high-level programming language” (i.e. one closer to human languages but further from
machine language) requires a translation into native machine instructions/code for a
computer to run and execute it. This translation process is usually done through interpreters

1. Getting started

31

or compilers. JavasScript is an interpreted language by design that in modern browsers,
generally operates using both an interpreter and just-in-time compilers to translate source
code at runtime. 11 This makes it faster to kickstart the code running process, but takes
longer when the application is more complex and with longer interactions, as extra runtime
overhead will be incurred. 12 On the other hand, Java, a compiled and complex
programming language, was first released to the public in 1996 by Sun Microsystems,
meaning that source code is typically written in an Integrated Development Environment
(IDE). 13 It is required to optimize and compile into static bytecode for computer processing
by a Java Virtual Machine (JVM). 14 Java powers many desktop and mobile applications,
from small apps on Android mobile devices to games like Minecraft, 15 while JavaScript
mainly works for smaller web-based applications such as websites and bots. For an
introduction to programming like this, we needed something that is relatively uncomplicated
in terms of getting started, but has the capacity for proficiency development. This is often
referred to as “low floors and high ceilings,” 16 and JavaScript is a good tool from
this perspective.

But there is much more to this than just introducing the tool from a pragmatic perspective.
This book will use p5.js, a JavaScript library which was created by artist Lauren McCarthy in
2014 for the purpose of what we call “aesthetic programming.” To be more precise about its
genealogy, Casey Reas and Ben Fry developed the remarkable, influential open source
project Processing in 2001, 17 a Java-based desktop environment with the aim to reach out
to visual artists and designers. However, McCarthy observed that the various creative open
source software available was mostly developed by white men, and there was a lack of
diversity in such environments, and unfortunately programming remains a very male-
dominated practice. 18 McCarthy started to explore what Processing would look like on the
web. Importantly, the core idea for p5.js is not just to deploy Processing as a web-based
platform, but to address diversity and inclusivity explicitly, and take these issues seriously in
software development and communication. As McCarthy says, “thinking about community
outreach and diversity is not a secondary goal of p5.js, it’s the foundation on which the
platform is built.” 19 Within just a couple of years, the p5.js contributors had developed a
community statement, translated the interface into a variety of popular languages such as
Spanish and Simplified Chinese, 20 started the homepage series as part of p5.js which
showcased work by and interviews by Asian women and gender non-conforming coders, 21
added a high constrast mode and audio feedback for people who have difficulty seeing, 22
and developed a series of workshops on creative expression called “Signing Coders” for
people who have difficulty hearing, 23 amongst other things. As p5.js demonstrates,
software is not just a tool, but also about people and politics. 24

Working environment

You will need an editor to write and document your code. We will use Atom, 25 a free and
open source text and source code editor that works across different platforms to write code.
We choose a downloadable code editor as opposed to a web editor because we view code as
more than just a piece of software, it is also about the relations with the configuration of your
own computer and operating system, the way various browsers behave as well as data files,
and the organization of folder paths, and so on.

https://atom.io/

Aesthetic Programming

32

Additionally we use Gitlab as our code and text respository, at least for this book. We also
use Gitlab for teaching purposes, a place where students can upload their ReadMe and
RunMe files every week, for peer feedback and to facilitate peer learning, and to read and
share code and related thinking. We have found this to be an effective way to work both
individually and collectively, and share materials in keeping with the best principles of free
and open source software development, and students use Readme to explain the technical
aspects as well as to develop critical discussion.

p5.js

1. First go to the download page of p5.js 26 and get the p5.js complete library (in the
compressed “p5.zip” format) by clicking it and saving the file, which includes all the
necessary libraries to run the code.

2. Double click to unzip the file to extract all the files it contains. A new folder will be
automatically created called “p5.”

3. The next part is crucial to the on-going development process, because you have to
somehow identify where your work folder will be located. If you have no idea, you may
consider using the “Desktop” folder. (“Foldering” is a concept used for organizing files on
your device, which is similar to organizing papers, folders, books on a bookshelf.
Increasingly streamlined UX designs mean that many people find it alienating to navigate
to or locate the path and directory of files, such as images, on a device as people are
becoming increasingly accustomed to putting everything on the first few pages of a
phone or simply on the desktop.)

4. If you put the unzipped folder “p5” in a customized directory, then you should see the list
of files in the folder as below. You should see the two p5.js libraries, one comprehensive
file (p5.js) and one mini version (p5.min.js).

5. Click on the folder “empty-example,” and you will see a list of the files you need to start:

index.html the default Hypertext Markup Language (HTML) which will be first to be picked
up by a web browser. HTML is a fundamental technology used to define the structure of a
webpage and it can be customized to include text, links, images, multimedia, forms, and
other elements.

sketch.js the key work file for writing JavaScript. The word ‘sketch’ is used similarly to the
way it would be in the visual arts, in other words it is a less formal means of working out
or capturing ideas, and experimenting with composition.

p5.js the p5.js core library.

p5.sound.js the p5.js sound library 27 for web audio functionality, including features like
playback, listening to audio input, audio analysis and synthesis.

https://about.gitlab.com/
https://p5js.org/download/

1. Getting started

33

Figure 1.2: p5 folder hierarchy Figure 1.3: p5 folder hierarchy

Code editor

Atom is used as the code editor for this book. It supports cross-platform editing and can be
run on Mac OS, Windows and Linux.

1. Download the software Atom from the homepage: https://atom.io/

2. Drag the “p5” folder that you have just unzipped into Atom. You should be able to see
the left-hand pane with your project. Try to navigate to the “index.html” file under the
“empty-example” folder, double click that file and the source code should display on the
right-hand pane. See below:

Figure 1.4: Atom’s file structure

https://atom.io/

Aesthetic Programming

34

“index.html” is usually the default page the web browser will display. You can customize the
page title and other styling issues, but the focus for this chapter will be on navigating the
libraries and running your first program. Since p5.js is a library, the lines 8-10 indicate how to
incorporate JavaScript files and libraries by using the tags <script> and </script>.

The script currently uses relative paths, which is a useful concept when we need to
understand how the libraries are operated, how to locate the files and how to incorporate
new libraries and files in the future. JavaScript libraries are simply files, and we have to
incorporate these files into the HTML so that they can be imported and read by the
program. This means that when we use p5 syntax, the program can recognize this
syntax and the corresponding function. For this particular example, it is important to be
aware that the JavaScript libraries and the HTML file are in the same directory. If we move
the libraries somewhere else, we will need to update the path.

3. Next you will need to install a package called “atom-live-server,” 28 which is useful for
setting up a web server so you can update your code and see the results immediately in
a browser without needing to refresh it. You can first check under “Packages” on your
menu bar of Atom and see if the package is there. If not, then go to “Edit >
Preferences > ‘+ Install’,” then type “atom-live-server.” Hit the blue install button and
you should be able to find it again in the Packages menu.

Figure 1.5: Installing atom-live-server

4. If you want to customize the theme like the background color of the panes, simply go to
“Preferences > Themes.”

1. Getting started

35

My first program

The default sketch.js is the work file. It contains only two functions. (A JavaScript function is a
block of code designed to perform tasks.)

function setup() → Code within this function will only be “run once” by the sketch work file.
This is typically used to set the canvas size to define the basic sketch setup.

function draw() → Taking cues from drawing practice in visual arts, code within this function
will keep on looping, and that means function draw() is called on for each running frame. The
default rate is 60 frames/times per second, and this is especially useful when things are set in
motion or constantly being captured (we will continue with this in Chapter 3, “Infinite loops”).

From the above sample code, there are code comments which is indicated with the symbol
“//”, referring to text that are written for humans but not computers. This means a
computer will automatically ignore those code comments when it executes the code. You
may consider this as an explaination on how specific chunk of code works. Throughout the
book, you will see // indicates a single line comment, and /*……………*/ indicates multiple
lines of code comments with the starting symbols “/*” and the ending symbols “*/.”

Let’s try to input these into the sketch to draw a canvas with a changing background (subtly
lighten the black background color), then the sketch will further draw an ellipse located
somewhere on the top left corner. (Double check the spelling and punctuation like curly
brackets and semi-colons, indicating the scope of the function and end of the line
respectively. Details of the code will be explained below.)

function setup() {1

 // put setup code here2

}3

function draw() {4

 // put drawing code here5

}6

function setup() {1

 // put setup code here2

 createCanvas(640, 480);3

 print("hello world");4

}5

function draw() {6

 // put drawing code here7

 background(random(50));8

 ellipse(55, 55, 55, 55);9

}10

Aesthetic Programming

36

To run the code, you need to go to “Packages > atom-live-server > Start Server” on Atom. A pop-
up window appears, click on the “empty-example” folder; it should display something like this:

Figure 1.6: My first program

Exercise in class

This exercise is to familiarize you with the working environment, path and local
directory so you learn that running a sketch in a web browser requires loading the
exact path to the JavaScript libraries. You are also free to create your own folder name
and rename the file sketch.js as you please. You can also try to change parameters by
changing numbers to get a sense of how things work, but this will be explained in
more detail later on in the book.

Figure 1.7: My first program 1.1

1. Getting started

37

1. Stop the server. Stop the atom-live-server by going to “Packages > atom-live-
server > Stop.”

2. Rename the folder. Try to rename the folder “empty-example” as “myFirstSketch”
(in order to help the computer to process better, don’t use any spaces). In the
subsequent chapters and for the exercises below, you will create your own folders.

3. Structure the p5 libraries.

– Try to create a folder called “libraries” under “myFirstSketch.”

– Drag the two p5 libraries into the newly created folder: “libraries.”

– Change the relative path of the two js libraries in index.html

4. HTML. Change the title in the HTML file (line 6)

5. RUN again. Can you run the program again (“Atom > Packages > atom-live-server
> Start Server”) so that you can see almost the same screen as Figure 1.7 in a
web browser?

Reading the web console “Hello World”

As you might realize by now, this book does not follow the conventions of most
programming books by starting with the “Hello World” program that displays or prints “Hello
World” onto the screen. In p5.js, print() is the function to print, 29 but in a web browser
setting which makes the print() function write in the “console area.” This is an area not
intended for end users, but for programmers or developers to see if there are any error
messages, which are logged to the console and to check that code is executing in the
expected way.

In the sample code (see Figure 1.6), the line 4 prints “hello world.” But to see the text, you
need to open the web console area the location of which depends on the browser you are
using. Try to search for it by navigating the menu bar. In Firefox, for instance, it is located
under “Tools > Web Developer > Web Console” (or press the keyboard shortcut: Ctrl + Shift
+ K for Linux/Windows, and Option + Command + K for Mac).

Aesthetic Programming

38

Figure 1.8: The web console area

At the bottom of Figure 1.8, the web console area shows the highlighted words “hello world.”
This tells you the sketch is running properly and it is able to read the print function line. As
you progress through this book, you will notice how important the web console area is,
because it also displays error messages if, for example, the syntax is wrong (we will discuss
errors in Chapter 8, “Que(e)ry data”). In such cases the browser will give you some good
hints for debugging your code. 30 Figure 1.9 shows that the web console area is able to
specify which file (sketch.js), which line of code (Line 8) has a problem (the syntax
background was spelled wrong intentionally), and it even suggests how you may correct it.

Figure 1.9: Example of syntax error

Hello World programs have a long history in computing, are typically used to introduce
programming languages to beginners, and ensure things are running as they should.
Readers understand the line print("hello world") quite literally as it is written in “natural”
language. At the same time the computer is executing precisely what you tell it to do,
printing a text through an “instruction,” giving an immediate result which can be very
rewarding. The immediate feedback “produces a feeling of power” as the programmer starts
to exert control over the code and its meaningful expression in the world. 31

1. Getting started

39

The programmer learns to express themselves in a new language as if speaking for the first
time, hence the seemingly naïve address, announcing themselves to the world. The project
hallo welt! (hello world!) , 32 by Geoff Cox and Duncan Shingleton plays on this
communicative act, looping more than 100 Hello World programs written in different
programming languages, alongside a selection of human languages, combining them into a
real-time, multilingual, machine-driven confusion of tongues (as in The Tower of Babel). 33

Reading the reference guide

To further explain the remaining parts of the sample code, this book will show you how to
learn independently, particularly by learning to read the reference guide so you can explore
things on your own. In the sample code, there are a few functions that you will see alongside
print(): these include createCanvas(), background(), random(), ellipse().

To summarize, what the sample code above does is initialize the exact canvas size
(createCanvas(640,480);), set the width to 640 pixels and the height to 480 pixels providing
an overall drawing area (see Line 3 of the sample code). This is why the background covers
only the canvas area and the rest of the area remains the (default) white background. The
sketch will pick a random color (from grey to black) as the background color at a given time,
covering the whole canvas (background(random(50));). The last part is to draw an ellipse at a
certain position and of a certain size (ellipse(55,55,55,55);). Locating this within the function
draw(), the program will constantly and repetitively execute the lines of code. The repetition
is made obvious in the sample code by the background color changing over time.

http://www.anti-thesis.net/hello-world-60/

Aesthetic Programming

40

Figure 1.10: The reference guide example - ellipse()

1. Getting started

41

To understand the parameters of each p5.js built-in functions, such as how many parameters
in a function like ellipse(), we can turn to “References” from the p5.js website. The reference
page lists most of the available p5.js built-in functions, and once you get used to their
presentation, it will become easier and faster to learn and write the syntax provided.

Let’s read the reference in Figure 1.10 together - ellipse(). 34 It usually starts with an
example and an illustration, and you can click the “edit” button to modify the code, changing
the parameters on the fly immediately displaying the results on screen. The description part
of the reference page explains how the function syntax works and this is especially useful for
beginners who might have little idea about the parameters/numbers and what this entails
for each parameter within a function. The syntax area demonstrates how the built-in function
should be written precisely, such as how many parameters for that function. For example, in
the case of ellipse(x, y, w, [h]), it explains how the first parameter x and the second
parameter y are used to set the location of the ellipse in terms of x and y coordinates. The
canvas is demarcated using pixel units and the [0,0] coordinates start in the top left corner
of the canvas. The parameter w and h refers to the width and height of the ellipse, and you
can also think of this as defining the diameter, or setting the size, of the ellipse. The square
bracket “[h]” is an optional parameter if the width and height of the ellipse is the same.

Figure 1.11: Visualizing the ellipse

What we want to demonstrate here is that it is important to start with the references, then
explore other syntaxes and features, for example shapes like rectangles and polygons. There
are still other syntaxes in the sample code that we haven’t explained in detail, so perhaps
you can find the corresponding references in the p5.js web reference material and explore
these yourself. However, we will continue to explore the color function in the next chapter,
and the random() function in the one following that.

https://p5js.org/reference/
https://p5js.org/reference/#/p5/ellipse

Aesthetic Programming

42

Git

We use Git both to write this book as well as teach. Git is an open source software
management system developed by Linus Torvalds in 2005, the creator of Linux Kernel
architecture that is used in the Linux operating system. It is used to track changes in any
files, facilitating versioning control of variations in a distributed network. It is particularly
useful for large-scale collaborative programming in which individuals work on different parts
of the software with their own machine by copying (forking), splitting (branching), and
combining (merging). Git uses a distributed model in which every contributor maintains and
has a copy of the main repository.

GitLab is an open source, web-based, Git repository platform that hosts software libraries
and source code contributed by software developers. GitLab is also a social platform, where
people can leave comments, follow other software development processes, fork the whole
program into their own repository, and so on. All this book’s content, including the readme
files, source code and libraries are stored on the GitLab platform under a creative commons
license, giving other people the rights to share, use and build upon this work. We imagine this
is just the first iteration of this book and we hope to see many re-appropriations and forks of
the entire book, so people can use the existing framework to make modifications, such as
adding new chapters, examples and exercises, as well as more related content and
references that facilitate the interactions between programming and thinking.

For simplicity’s sake, we use GitLab’s web interface for some of our writing and teaching, and
for students to hand-in their weekly RunMe 35 and ReadMe 36 files. We also use GitLab for
peer feedback so that students can read and learn from each other’s work.

Figure 1.12: Create a new project with the GitLab web interface

1. Getting started

43

1. Go to Gitlab.com, then register an account by clicking “Register” on the navigation bar.

2. To create a new project: Go to “Projects > New Project” (see Figure 1.12).

3. Provide a project name and project description, and click “Public” if you want others to
be able to access this project without any authentication.

4. At this point you can also initialize a ReadMe within the repository by ticking
the checkbox.

5. A folder in your repository will then be created.

6. To upload the file or create a directory, simply click on the “+” sign under the repository
project name (see Figure 1.13). GitLab allows you to customize a commit message (to
keep track of changes from a general and communications perspective), we can
therefore input the message before clicking the button “Commit changes.”

Figure 1.13: Manage directories/files using the GitLab web interface

If you need other features: previewing the markdown file, deleting or renaming files/folders,
the GitLab Web IDE editor has some advanced features you can use (this is located at the
top right, see Figures 1.13 and 1.14).

Figure 1.14: The GitLab Web IDE

http://localhost:8000/Gitlab.com

Aesthetic Programming

44

While()

Briefly introduced above, Git is a distributed version-control system for tracking changes in
source code during software development. It is designed for coordinating work among
programmers, but it can also be used to track changes in any set of files, including the
workflow of the chapters of this book. It is a repository that includes a complete history of
changes and full version-tracking abilities. Its serious workflow management functionality is
somewhat undermined by speculation surrounding the name “Git,” and whether it is an
acronym or not. Allegedly, Torvalds who developed it as a content tracker for Linux (which he
also developed), named it “Git,” an offensive British slang word in the common idiom “stupid
old git,” to mock himself. Similarly it has been referred to as a “stupid content tracker,” but
this is hardly the case as in reality it is a fast, scalable, and effective distributed revision
control system. 37 For clarity, git is spelled “git” (for the command) and “Git” (for the
product), not “Git” (for the person), since it is not an acronym, but rather an expression of
the intent to do something: a tool which does not try to be overly smart but not stupid
either. Moreover the ability to make multiple versions is an overtly social act, an expression of
the belief in sharing ideas and labor (just like the p5.js community 38) for the commons,
and as such protected under the legal protection of the GNU General Public License which
guarantees users the freedom to run, study, share and modify their software. 39

Like the debates over “Git” and “git,” the use of words becomes hugely significant in terms of
their meaning and ability to do things in the world in programming as well as in everyday
situations. Another example, of decolonizing software, is the use of the terms “master” and
“slave” in programming (where one process exerts control over another process within a
dependent relationship), which is considered “a broken metaphor” and “an oppressive
metaphor” according to Ron Eglash and The Internet Engineering Task Force (IETF)
respectively. 40 In daily interpersonal communications, a further example in language would
be the politics of pronouns and how the use of “she,” “he,” or “they” indicates particular
subject positions when referring to people and in the gendering of objects, given that
language tends to be “man-made.” 41 The importance of this is how to do things with words
ethically given that words have effects as Judith Butler, amongst others, has incontrovertibly
demonstrated; in Excitable Speech , Butler shows how words can be “injurious.” 42 We will
return to the analogy between speech and programming in Chapter 7, but for now it is
enough to say that words have social and political consequences, and this extends to the
naming of computational objects and functions. 43 Whether they are directly executable or
not they still have effects.

This politics of language was touched upon in the first section of this chapter, through what
we might call an “expanded literacy” — the ability to read, write, and “program” — an
enhanced understanding of the relationship between what words mean and do in terms of
wider culture. Literacy is crucially important to explain how new kinds of reading and writing
are required to account for significant cultural and technical changes which includes issues of
access. To clarify, we can refer back to the beginnings of Cultural Studies as a field, and
Richard Hoggart’s Uses of Literacy (published in 1957) that included working class (or
mass) cultures as part of what we call “culture,” previously the preserve of an elite, thereby
introducing an expanded notion of literacy. 44 Clearly literacy is a shifting notion, changing
across cultures, and underpinned by the changing relations between speaking and writing

1. Getting started

45

that were also explored by Walter J. Ong in Orality and Literacy , who argued that the
electronic age has sharpened our understanding through the “secondary orality” of media
that all depend on writing in various ways. 45 The written words of programming, for
instance, demonstrate how our language has been further enhanced by new forms, and how
writing is a form of action and not simply a referent of thinking.

In this book we weave together the words and actions of human and computer languages,
recognizing that they are not equivalents as such. The syntax of JavaScript that we use in
this book is one specific instance of this — useful for learning programming fundamentals and
basic concepts — but also allowing for experimentation with “secondary notation.” By this, we
mean adjusting the formal notation to allow it to be more easily understood, providing
opportunities for other creative expressions through semantic ambiguity. Think, for instance,
of the use of “class” to describe one or more objects in object-oriented programming as well
as stratifications in society based on economic and social status. An excellent example of
this is Harwood’s codework Class Library , a melding of program code and written text that
stresses the material conditions of working with code and the possibility of class action. 46
You might want to look this term up in the references section to clarify your technical
understanding. 47

This argument for programming or coding as a necessary skill for contemporary life seems
indisputable, and there are plenty of examples of initiatives related to computational literacy
and thinking, from online tutorials to websites such as Codecademy.org and Code.org. As
introduced at the beginning of this chapter, Vee’s Coding Literacy also explores these
connections, arguing how the concept of literacy underscores the importance, flexibility, and
power of writing for and with computers. 48 An important aspect of this is that, not only
does this help us to better understand the social, technical and cultural dynamics of
programming, but it also expands our very notion of literacy and its connection to a politics
of exclusion (as with other non-standard literacies). Furthermore, and given that
programming, like other forms of writing, performs actions, it presents itself as a way to
reconceive politics too: not simply writing or speaking, arguing, or protesting in public, but
also demonstrating the ability to modify the technical processes through which the action is
performed, in recognition of the ways in which power and control are now structured at the
level of infrastructure. 49

Your first program is a means to engage with these ideas, to run some code. As this is not
meant to be, nor can be, simply a technical exercise, we ask you to make the critical and
practical aspects explicit in producing a ReadMe and a RunMe. This book serves as a guide for
this initial task as well as subsequent ones: to run some code, and think with it.

Aesthetic Programming

46

MiniX: RunMe and ReadMe

Make a RunMe and a ReadMe.

Objective

– To learn the basic setup, including writing code with a code editor, running code
with a web browser, independent study of code syntax, creating a ReadMe
file, etc.

– To start thinking with programming conceptually.

For additional inspiration

– Daily Sketch in Processing by Saskia Freeke, https://twitter.com/sasj_nl
(and her talk can be found at https://youtube.com/watch?v=nBtGpEZ0-EQ);
All the Daily Things by Saskia Freeke (2018), https://vimeo.com/309138645.

– Zach Lieberman’s Instagram page, https://instagram.com/zach.lieberman/.
– “Basics in OpenProcessing,” https://openprocessing.org/browse/?

q=basics&time=anytime&type=all#.
– “Creative Coding with Processing and p5.js,”

https://fb.com/groups/creativecodingp5/.

Task (RunMe)

1. Study at least one example of syntax from the p5.js reference site,
https://p5js.org/reference/. (Of course, it is always good to know more than one.
Be curious!)

2. Familiarize yourself with the reference structure: examples, descriptions, various
pieces of syntax and parameters (This knowledge will give you an essential, life-
long skill for learning new syntax on your own).

3. Use, read, modify (or even combine) the sample code that you find (the most
basic level is changing the numbers), and produce a new sketch as a RunMe.

Questions to think about in your ReadMe

– What have you produced?
– How would you describe your first independent coding experience (in relation to

thinking, reading, copying, modifying, writing code, and so on)?
– How is the coding process different from, or similar to, reading and writing text?
– What does code and programming mean to you, and how does the assigned

reading help you to further reflect on these terms?

https://twitter.com/sasj_nl
https://youtube.com/watch?v=nBtGpEZ0-EQ
https://vimeo.com/309138645
https://instagram.com/zach.lieberman/
https://openprocessing.org/browse/?q=basics&time=anytime&type=all#
https://fb.com/groups/creativecodingp5/
https://p5js.org/reference/

1. Getting started

47

Required reading

– Lauren McCarthy, “Learning While Making p5.js,” OPENVIS Conference (2015),
https://youtube.com/watch?v=1k3X4DLDHdc.

– “p5.js | get started,” https://p5js.org/get-started/.

– Daniel Shiffman, “1.1: Code! Programming with p5.js” (2018), https://youtube.com/watch?
v=yPWkPOfnGsw.

– Annette Vee, “Coding for Everyone and the Legacy of Mass Literacy,” in Coding Literacy:
How Computer Programming Is Changing Writing (Cambridge, MA: MIT Press,
2017), 43-93.

Further reading

– Wendy Hui Kyong Chun, “On Software, or the Persistence of Visual
Knowledge,” Grey Room 18, January (2005): 26–51,
https://doi.org/10.1162/1526381043320741.

– Brian Lennon, “JavaScript Affogato: Programming a Culture of
Improvised Expertise,” Configurations 26, no. 1, Winter
(2018): 47-72.

– Nick Montfort, “Appendix A: Why Program?” Exploratory
Programming For the Arts and Humanities (Cambridge, Mass.: MIT
Press, 2016), 267-277.

https://youtube.com/watch?v=1k3X4DLDHdc
https://p5js.org/get-started/
https://youtube.com/watch?v=yPWkPOfnGsw
https://doi.org/10.1162/1526381043320741

Aesthetic Programming

48

Notes

1. In the 1960s the opportunities for getting
a job, regardless of gender and
educational background, in the area of
programming was enormous. With low
entry barriers, prior coding experience nor
college-educated training were not
prerequisites, and companies generally
offered on-the-job training. Many women
entered the programming field and
climbed up the “computer ladder” during
the early years of computing history,
according to Lois Mandel, “The Computer
Girls,” Cosmopolitan (April 1967): 52-56.
However, although computer
programming “started out with an
ambiguous gender identity, [it] was
gradually and deliberately transformed
into a high-status, scientific, and
masculine discipline,” according to
Nathan Ensmenger, “Making
Programming Masculine,” in Gender
Codes: Why Women are Leaving
Computing, Thomas J. Misa, ed.
(Hoboken, NJ: John Wiley, 2010), 115-141.

2. Having programming skills has become a
prerequisite in education and business
globally. See, for instance, https://ec.eur
opa.eu/digital-single-market/en/coding-
21st-century-skill and https://news.micro
soft.com/apac/features/coding-way-bri
ghter-future-2018-beyond/. The opening
up of programming beyond specialized
disciplines, the so-called “STEM” subjects,
sets the conditions for what we refer to as
“aesthetic programming.”

3. We are thinking of Stuart Hall’s essay
“Encoding/Decoding” in which he argues
that people can play an active role in
decoding messages, in Stuart Hall et al,
eds. Culture, Media, Language
(London: Hutchison, 1980), 128-38.

4. Annette Vee, Coding Literacy: How
computer programing is changing
writing (Cambridge, MA: MIT Press, 2017),
4. Beyond coding literacy, we can also
observe other kinds of literacy in
mainstream media, policy making, and
academic discourse, such as procedural,
data and digital literacy. See Ian Bogost,
“Procedural Literacy: Problem Solving with
Programming, Systems, & Play,” The
Journal of Media Literacy 52, no. 1-2
(2015); Michael Mateas, “Procedural
Literacy: Educating the New Media
Practitioner,” On the Horizon. Special
issue. Future of Games, Simulations
and Interactive Media in Learning
Contexts 13, no.1 (2005); Annette N.
Markham, “Taking Data Literacy to the
Streets: Critical Pedagogy in the Public
Sphere,” Qualitative Inquiry (August
2019). doi:10.1177/1077800419859024;
Teressa Umali, “Exclusive: Promoting
Digital Literacy in the Philippine Education
System,” OpenGov Asia , available at htt
ps://www.opengovasia.com/promoting-
digital-literacy-in-the-philippine-education-
system/.

5. John Cayley, “The Code is Not the Text
Unless it is the Text,” Electronic Book
Review (2002), available at http://electr
onicbookreview.com/essay/the-code-is-
not-the-text-unless-it-is-the-text/, see
also Katherine Hayles, Writing Machines
(Cambridge, MA: MIT Press, 2002).

6. Vee, Coding Literacy: How computer
programing is changing writing , 45-
58.

7. Nick Montfort, Exploratory
Programming for the Arts and
Humanities (Cambridge, Mass.: MIT
Press, 2016).

8. We take this from Douglas Rushkoff’s
Program or Be Programmed: Ten
Commandments for a Digital Age
(New York: OR books, 2010).

9. A library is a collection of resource in the
form of code containing programming
functions and their details. Those
functions can be used to develop software
programs and applications.

10. Charles Severance, “Javascript: Designing
a Language in 10 Days,” IEEE
Computer Society , February (2012), 7-8.

11. Lin Clark works at Mozilla and turns code
into cartoons. Here she explains how
JavaScript is run in the browser, see http
s://hacks.mozilla.org/2017/02/a-crash
-course-in-just-in-time-jit-compilers/.

12. Seong-Won Lee and Soo-Mook Moon,
“Selective Just-in-time Compilation for
Client-side Mobile JavaScript Engine”, in
Proceedings of the 14th
International Conference on
Compilers, Architectures and Synthesis
for Embedded Systems (CASES
‘11) (New York: ACM, 2011), 5-14. DOI: htt
ps://doi.org/10.1145/2038698.2038703

13. IDE is a software application that provides
a more comprehensive and integrated
environment for software development. It
usually consists of a source code editor,
build automation tools and a debugger. In
this book we use Atom as the code editor,
but it requires another tool for debugging
such as a browser’s web console. One
example of IDE would be Processing, an
open source, standalone application built
for the visual and electronic art
communities. See https://en.wikipedia.o
rg/wiki/Integrated_development_enviro
nment.

14. JVM refers to a virtual environment in a
machine (usually a computer) that can
run and execute programs in the form of
Java bytecode written in programming
languages such as Java. JVM performs
operations such as loading, verifying,
executing code and offers a runtime
environment. See https://en.wikipedia.or
g/wiki/Java_virtual_machine.

15. See https://minecraft.gamepedia.com/
Development_resources.

16. A concept was first formulated by
mathematician, computer scientist, and
educator Seymour Papert who was an MIT
Professor and created the design principle
for a programming language called Logo.
See Seymour Papert, Mindstorms:
Children, Computers, and Powerful
Ideas (New York: Basic Books, 1980).

17. See https://processing.org.
18. The lack of gender diversity is also

reflected in the Aesthetic Programming
course feedback in 2017, with a student
commenting that “code is not a
gentlemen’s club that only belongs to
computer scientists.” Artist Juli Laczko’s
research and practice address the issue of
gender and stereotyping in the history of
computing. One of the examples is the
artwork webmachine, which is a reversed
analog weaving computer. It is an online
software piece that uses punch card
technology to translate a binary text into
visual code. The project looks into the
history and labor practices of weaving and
how culture reinforces stereotypes in
computing. See https://digital-power.sig
graph.org/piece/webmachine/.

https://ec.europa.eu/digital-single-market/en/coding-21st-century-skill
https://news.microsoft.com/apac/features/coding-way-brighter-future-2018-beyond/
https://www.opengovasia.com/promoting-digital-literacy-in-the-philippine-education-system/
http://electronicbookreview.com/essay/the-code-is-not-the-text-unless-it-is-the-text/,
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://doi.org/10.1145/2038698.2038703
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Java_virtual_machine
https://minecraft.gamepedia.com/Development_resources
https://processing.org/
https://digital-power.siggraph.org/piece/webmachine/

1. Getting started

49

19. Lauren McCarthy, “P5js Diversity & Floss
Panel Introduction” (2015). Video available
at http://opentranscripts.org/transcrip
t/p5js-diversity-floss-panel-
introduction/.

20. p5.js is now available in Spanish, see Maya
Man, Processing Foundation (2016),
available at https://medium.com/proce
ssing-foundation/p5-js-is-now-available-in
-spanish-3d1eab9dffa0; see also Kenneth
Lim, Chinese Translation for p5.js and
preparing a future of more translations
(2018), available at https://medium.co
m/processing-foundation/chinese-transl
ation-for-p5-js-and-preparing-a-future-of-m
ore-translations-b56843ea096e.

21. Such a series with a focus on diversity
within code+art and placed under the
subdomain of p5.js, created and curated
by Chelly Jin, diversity.p5js.org.

22. A UX-research project by Claire Kearney-
Volpe, https://www.clairekv.com/p5js-u
x-research.

23. A project by artist and educator Taeyoon
Choi, http://taeyoonchoi.com/soft-car
e/signing-coders/.

24. Chun politicizes the concept of software,
and, in particular, she traces the history of
automatic programming, the rise of the
binary distinction between hard and
software, as well as the erasure of gazes.
See Wendy Hui Kyong Chun, “On Software,
or the Persistence of Visual Knowledge,”
Grey Room 18 (January 2005): 26–51. ht
tps://doi.org/10.1162/152638104332074
1.

25. https://atom.io/.
26. p5.js download page, https://p5js.org/d

ownload/.
27. https://p5js.org/reference/#/librarie

s/p5.sound.
28. https://atom.io/packages/atom-live-se

rver.
29. https://p5js.org/reference/#/p5/print.
30. p5.js has built in “The Friendly Error

System” to help coders especially
beginners. The library considers a well-
designed and user friendly debugger
“written in a right tone “can lower the
barrier for inexperienced users.” See A.
Mira Chung, “Friendly Error System for
p5.js”, Processing Foundation (2017), h
ttps://medium.com/processing-founda
tion/2017-marks-the-processing-foundati
ons-sixth-year-participating-in-google-su
mmer-of-code-d365f62fc463.

31. Wendy Hui Kyong Chun and Andrew Lison
argue the first “Hello World” program we
learn is enjoyable and seductive. We will
say more about this in the following
chapter. See Chun and Lison, “Fun is a
Battlefield: Software between Enjoyment
and Obsession,” in Olga Goriunova, ed.,
Fun and Software: Exploring
Pleasure, Paradox and Pain in
Computing (New York, London:
Bloomsbury, 2014), 180.

32. hallo welt! (hello world!) was a
collaboration between Geoff Cox and
Duncan Shingleton, see http://www.anti-
thesis.net/hello-world-60/.

33. The Tower of Babel , designed to reach
heaven, displeased God such that “he”
decided to confound the single language
of Adam so that people would not
understand each other’s speech (Genesis
2:19 & 11:1-9). Subsequently everyone is
left to “babble” in a diversity of languages
the so-called confusion of tongues. The
code expresses this confusion, but also
invokes free speech, allowing the web
browser to “speak” through software
according to what it is said/written. “It is
both a computer-readable notation of
logic and a representation of this process,
both script and performance; and in this
sense it is like spoken words” as Cox
reminds us. See Geoff Cox, Speaking
Code: Coding as Aesthetic and
Political Expression (Cambridge, Mass:
MIT Press, 2013), 3.

34. See https://p5js.org/reference/#/p5/
ellipse.

35. To run the JavaScript via GitLab on a web
browser, you need to do some
configuration in the repository before
uploading any source code. A new file
(.gitlab-ci.yml) is created in the root of the
project repository, containing a set of jobs
and their specifications that are required
to run on GitLab. You can follow GitLab’s
guidelines (in terms of the code in the yml
file as well as the use of repository as a
website) here, https://gitlab.com/page
s/plain-html/-/blob/master/README.m
d.

36. The readme file is structured in a
markdown format with the file extension
as “.md”. It is a lightweight markup
language supporting simple text
formatting with special syntax. Files with
this extension can be processed by
GitLab and display in a more readable
form visually on the web. For more about
the syntax of writing in markdown, see: htt
ps://docs.gitlab.com/ee/user/markdo
wn.html.

37. This discussion is summarized at http
s://stackoverflow.com/questions/4395
9748/what-is-the-abbreviation-of-git.

38. See https://github.com/processing/p
5.js/wiki.

39. See https://www.gnu.org/licenses/lgpl-
3.0.txt.

40. Not before time many software
communities have decided to stop using
“master-slave,” such as Django and
Python, and have replaced with
alternative terms. See, https://tools.ietf.
org/id/draft-knodel-terminology-00.html
#rfc.section.1.1. According to Ron Eglash,
the term master-slave suggests the
element of control in a dependent
relationship, however it is not accurately
described technically and has further
raised the ethical issues in using broken
metaphor in computing. See, Ron Eglash,
“Broken Metaphor: The Master-Slave
Analogy in Technical Literature,”
Technology and Culture 48, no.2
(2007): 360–69. https://doi.org/10.135
3/tech.2007.0066.

41. Foundational reading on this issue would
be Dale Spender’s Man-Made
Language (1980), https://www.marxist
s.org/reference/subject/philosophy/wo
rks/ot/spender.htm.

42. Judith Butler, Excitable Speech: A
Politics of the Performative (London:
Routledge, 1997).

43. See also Geoff Cox & Alex McLean,
Speaking Code: Coding as Aesthetic
and Political Expression (Cambridge,
MA: MIT Press, 2013).

44. Richard Hoggart, The Uses of Literacy:
Aspects of Working Class Life [1957]
(London: Penguin, 2009).

45. Walter J. Ong, Orality and Literacy:
The Technologizing of the Word [1982]
(London: Routledge, 2002).

46. See Harwood’s “Class Library”, in Fuller
ed., Software Studies , 37-39.

47. See, https://p5js.org/reference/#/p5/
class.

48. Vee, Coding Literacy .
49. This point is largely derived from Kelty’s

Two Bits , which uses the phrase “running
code” to describe the relationship
between “argument-by-technology and
argument-by-talk.” See Christopher Kelty
Two Bits: the Cultural Significance of
Free Software (Durham: Duke University
Press, 2008), 58. Clearly programmers
are able to make arguments as people
can in other rhetorical forms, see Kevin
Brock, Rhetorical Code Studies:
Discovering Arguments in and
around Code (Ann Arbor, MN: University
of Michigan Press, 2019).

http://opentranscripts.org/transcript/p5js-diversity-floss-panel-introduction/
https://medium.com/processing-foundation/p5-js-is-now-available-in-spanish-3d1eab9dffa0
https://medium.com/processing-foundation/chinese-translation-for-p5-js-and-preparing-a-future-of-more-translations-b56843ea096e
https://www.clairekv.com/p5js-ux-research
http://taeyoonchoi.com/soft-care/signing-coders/
https://doi.org/10.1162/1526381043320741
https://atom.io/
https://p5js.org/download/
https://p5js.org/reference/#/libraries/p5.sound
https://atom.io/packages/atom-live-server
https://p5js.org/reference/#/p5/print
https://medium.com/processing-foundation/2017-marks-the-processing-foundations-sixth-year-participating-in-google-summer-of-code-d365f62fc463
http://www.anti-thesis.net/hello-world-60/
https://p5js.org/reference/#/p5/ellipse
https://gitlab.com/pages/plain-html/-/blob/master/README.md
https://docs.gitlab.com/ee/user/markdown.html
https://stackoverflow.com/questions/43959748/what-is-the-abbreviation-of-git
https://github.com/processing/p5.js/wiki
https://www.gnu.org/licenses/lgpl-3.0.txt
https://tools.ietf.org/id/draft-knodel-terminology-00.html#rfc.section.1.1
https://doi.org/10.1353/tech.2007.0066
https://www.marxists.org/reference/subject/philosophy/works/ot/spender.htm
https://p5js.org/reference/#/p5/class

Aesthetic Programming

50

50. Processing Foundation announced the
official release of the p5.js Web Editor in
2018, an online platform for learning and
running code, and it is easy to get started
with no additional installation of software.
See https://medium.com/processing-fo
undation/hello-p5-js-web-editor-b90b90
2b74cf.

51. See https://p5js.org/reference/.

https://medium.com/processing-foundation/hello-p5-js-web-editor-b90b902b74cf
https://p5js.org/reference/

2. Variable geometry

51

2. Variable geometry

2. Variable geometry

setup()

MiniX:
Geometric emoji

Required reading

start()

While()

Source code

Coordinate

Variables

Other functions

Conditional structures

Exercise in class

Discussion in class

Why use variables?Basic arithmetic operators

Relational operators

Notes

Further reading

53

55

56

58

58

60

62
63

63

64
65

66

66

68

69

69

70

Contents

– setup()

– start()

– Source code

– Coordinates

– Exercise in class

– Variables

– Why use variables?
– Other functions

– Conditional structures

– Relational operators
– Basic arithmetic operators

– Discussion in class

– While()

– MiniX: Geometric emoji

– Required reading

– Further reading

– Notes

2. Variable geometry

53

setup()

Aside from the difficulties of learning anything new and complex, learning to code can be
enjoyable and rewarding (we hope!). That programming can be fun is demonstrated by the
numerous titles that explicitly reference this, such as Linus Torvalds’s book Just for Fun:
The Story of an Accidental Revolutionary , written with David Diamond, part
autobiography and part story of the development of Linux. 1 Fun was, in this case,
combined with the serious effort of making source code freely available and open to further
modification. Like sharing a joke, or indeed recipe, programmming is a social activity and
relies on collective understanding in order to “get it.”

There are many more examples that reinforce the idea of fun, as if simply stating this would
be enough to convince users to work through learning to program and not be too put off by
its underlying difficulty. In what follows we encourage you to have fun with geometry,
following on from drawing an ellipse in the previous chapter. The idea is to further explore
various shapes, sizes, positions, space, and lengths, all which are regarded as geometry by
mathematics and have multiple applications in everyday life including, but not limited to,
typography, signage, graphic design, and architecture, as well as other organizational forms.
More specifically, points, lines, and planes are regarded as the foundational elements of
design as these elements are used to constitute objects, and the world is made up of
various objects that have particular properties. Fun with geometry comes from manipulating
these properties, and reconstituting them anew, creating alternative patterns of recognition
and understanding. 2 As Olga Goriunova states in her edited book Fun and Software , fun
with computers is considered to be a mode of thinking, 3 and, furthermore, fun can be had
with the paradoxes that arise in the process. By creating new computational objects, you will
manipulate learnt procedural logics, and explore how these might be adapted and redrawn.
Variable geometry in this sense is about shape-shifting: re-imagining all sorts of new shapes,
compositional forms, and spatial relations, thereby challenging geometric conventions. 4

We take the example of emoticons — ideograms, typically smileys — as typographic
shorthand for expressing facial emotional states such as happiness, “:D”. These have
become pervasive in communication, and are no longer simply typographic, but actual
pictures which can be funny at times as emojis, but also come with underlying issues related
to the politics of representation. More on this below, but for now, suffice to say, emojis make
a good example as they consist of geometric shapes, using lines, points, planes, and colors.
This chapter is about having fun with this (even if some of the underlying issues are not fun
at all), exploring the affective dimension of emojis, and the varying representations that we
encounter in everyday communications.

The relationship between emoji standardization and a politics of representation has been
explored by many commentators. The essay “Modifying the Universal,” written by Roel
Roscam Abbing, Peggy Pierrot and Femke Snelting is a good example, 5 as it investigates
the politics of emoji “universalism.” Emojis emerged from the Unicode project, that has set
the computing industry standard for the consistent encoding, representation, and handling
of text for software internationalization in all major operating systems and writing
applications since 1987. Interestingly, on a technical level, Unicode provides a unique code

Aesthetic Programming

54

point (a number) to represent a character in an abstract way and leaves the visual rendering
(size, font, shape, geometry) to other software, such as a web browser or word processor. It
is the question of representation that interests us here.

Much like the utopian project of developing a universal language to be spoken and
understood by the majority of the world’s population (such as Esperanto) Unicode is clearly
important to communicative operations across international/multilingual systems. By the
time of the most recent version, Unicode 12.1’s release in May 2019, there were 137,994
characters covering 150 scripts, as well as multiple symbol sets and emojis. 6 Yet, as the
standard expanded from the underlying characters and glyphs to symbol sets and emojis,
the universalism has become increasingly problematic. Criticism has unsurprisingly centered
on the politics of representation, such as blatant gender stereotyping and racial
discrimination: for example, female emojis were under-represented in certain professional
roles, 7 there were also limitations of skin tone applied to emojis and “universal modifiers”
that were not displayed “universally” across all devices and operating systems.

Our point is that using emojis may be fun and expressive, but they also tend to oversimplify
and universalize differences, thereby perpetuating normative ideologies within already
“violent power structures,” 8 such that only selected people, those with specific skin tones
for instance, are represented while others are not. There is a distinct inequality as to how
people are represented, and we need to question who sets the standards for these
representations. That such operations can be characterized as fun is part of the problem and
masks other processes that monitor our emotional states not least in the workplace (we will
return to this issue in Chapter 4, “Data capture”). The project AIMoji by Process Studio
highlights some of these issues with the use of deep learning techniques and training
existing emoji data 9 in order to mess up their reductive representational logic and produce
noisy mutations that offer inbetween shapes, faces and emotions, thereby rejecting
universalism. Above are some of the issues we want to explore in this chapter by introducing
variable geometry and learning to be able to produce alternatives, more politically-correct
ones perhaps. We will start with the work Multi by graphic designer David Reinfurt which will
be used to demonstrate the basis of geometry and the variations of facial expression and
composition that can be generated from simple typographic elements.

2. Variable geometry

55

start()

Figure 2.1: Multi by David Reinfurt. Courtesy of the designer.

Aesthetic Programming

56

Multi (http://www.o-r-g.com/apps/multi), 10 is inspired by another designer Enzo Mari
who spent a whole year in 1957 exploring the essential form of an object (an apple). Reinfurt
explains that, “He was not looking to draw AN apple, but rather THE [universal] apple — a
perfect symbol designed for the serial logic of industrial reproduction.” Multi develops a
variation of this idea for informational reproduction in the form of a mobile app with 1,728
possible arrangements, or facial compositions, built from minimal punctuation glyphs. But
instead of using preset typographic characters, which admittedly is the conceptual charm of
Multi, for our purpose we will draw these from scratch with foundational elements
of geometry.

Source code

Figure 2.2: The screenshot of the remix of Multi

RunMe, https://aesthetic-
programming.gitlab.io/book/p5_SampleCode/ch2_VariableGeometry/.

http://www.o-r-g.com/apps/multi
https://aesthetic-programming.gitlab.io/book/p5_SampleCode/ch2_VariableGeometry/

2. Variable geometry

57

/*Inspired by David Reinfurt's work - Multi*/1

let moving_size = 50;2

let static_size = 20;3

4

function setup() {5

 createCanvas(windowWidth, windowHeight);6

 frameRate(15);7

}8

9

function draw() {10

 //background11

 background(random(230, 240));12

 //left13

 noStroke()14

 fill(0);15

 rect(97, 169, 79, 12);16

17

 //right18

 rect(365, 184, 20, 15);19

 fill(20, 20, 120);20

21

 beginShape();22

 vertex(365, 199);23

 vertex(385, 199);24

 vertex(372, 216);25

 vertex(358, 216);26

 endShape(CLOSE);27

28

 //bottom29

 noFill();30

 stroke(130);31

 strokeWeight(2);32

 ellipse(255, 350, static_size, static_size);33

34

 //mouse interactions35

 stroke(180);36

 ellipse(mouseX, mouseY, moving_size, moving_size);37

38

 if (mouseIsPressed) {39

 static_size = floor(random(5, 20));40

 }41

}42

Aesthetic Programming

58

The above code draws various shapes and performs simple interactions:

– the background is filled with flashing grey-scale colors
– on the left is a horizontal rectangle in the color black
– on the right is a rectangle in black and a polygon in blue
– on the bottom is an ellipse without any filled color but with grey stroke color
– when you move the mouse, an outlined ellipse in grey color follows the movement
– you can also click on the mouse to change the size of the grey ellipse

Coordinates

In the previous chapter, we briefly discussed the x and y coordinates that constitute a
fundamental concept for positioning and drawing objects with various measurements on a
canvas. A line of code like createCanvas(windowWidth,windowHeight) refers to creating a canvas
with its width and height in line with your window size. Unlike the previous chapter where the
exact pixel dimension was set as in the example createCanvas(640,480);, this approach gives
you a flexibility of no fixed canvas size. Therefore, the background color of the sample code
fills the whole window screen, and the concept of canvas as spaces change variably in terms
of geometry. It is good to remind ourselves that in mathematics the origin [0,0] is usually
positioned in the center of a grid paper/screen, but in programming language like p5.js the
origin is situated in the upper left corner (see Figure 1.11 in the previous chapter). This
impacts on how objects are placed, and shifts our perception/understanding of
space/canvas by having a frame of reference.

Exercise in class

Remember the structure of a web page/application should include the HTML, a
working JavaScript file (for example, sketch.js), as well as the associated
p5.js libraries.

– Type/copy the above source code in the working JavaScript file, then save the
code. Run the program on Atom (with the live-atom-server) and, on screen, the
background should flash.

function setup() {1

 createCanvas(windowWidth, windowHeight);2

 frameRate(15);3

}4

5

function draw() {6

 background(random(230,240));7

}8

2. Variable geometry

59

– There are few new examples of syntax, or a slightly different use of syntax, here:
– frameRate(): This sets the number of frames per second that the computer will

use when running the program. The default is 60 and this sets it to 15 (see
Line 3), so you can see the background color for each frame quite clearly (you
can also compare the flash/frame rate to the sample code in the
previous chapter).

– random(230,240): In the earlier sample code, the function random() only took a
single parameter. This sample code gives you a different use of the function
with two parameters. If you look at the reference guide
(https://p5js.org/reference/#/p5/random), 11 it explains that the random
function returns a floating-point number, and this means that the number is
not an integer, but a number with decimals. In this case, the program will
return a floating-point number between 230.0 and up to, but not including,
240.0 (see Line 7). An example of such a returned value would be 231.34387.

– Next you need to remember how to use the web console (Under Tools > Web
Developer > Web Console on Firefox).

– Type print(width); and then press enter.
– Type console.log(width, height); and then press enter.

Figure 2.3: Simple exercise

https://p5js.org/reference/#/p5/random

Aesthetic Programming

60

When you type the syntax print(width); the web console area (see Figure 2.3) displays
the actual width in pixels. Additionally, if you use console.log(width, height);, which is
the equivalent of the print function in JavaScript (not a p5.js function), the screen
displays two numbers according to your screen size (you may adjust the screen and
try again to get a different number). With just two lines in the web console area, you
have asked the program to give you the values for the width and height of the canvas.
The program understands the two names “width” and “height” as they are pre-set
names in p5.js which you can use specifically for asking the dimensions of the canvas.

Variables

In programming, both width and height are called “variables” — another important concept.
Variables are used to store data and information in a computer program. You can think of
variables as a kitchen container, in which you can put different types of things (like food,
kitchen utensils, etc.) in a given container, replace them with other things, and store them for
later retrieval. There are two main types of variables: “local variables” that are defined within
a structure or a function, can only be used within that block of code; and “global variables”
that can be used anywhere in the code. Global variables need to be defined before the setup
of the program, usually in the first few lines of code.

In the previous exercise, the value in the sample code (line 2) behind windowWidth is the width
of the window set as the canvas width. To continue the analogy, a container with the name
“width” (as we have just typed in the web console) is labeled and stores the value. The
program is able to retrieve the measurement of the canvas by using the variable width and
this value can be changed according to your window width, and can be retrieved and
displayed using the web console. (You can also use the variables width and height in other
parts of your sketch, and for other purposes.)

It is important to note that you can also assign your own variable names (in other words, you
can create your own type of container and store other values).

let moving_size = 50;1

let static_size = 20;2

…3

ellipse(255, 350, static_size, static_size);4

…5

ellipse(mouseX, mouseY, moving_size, moving_size);6

7

if (mouseIsPressed) {8

 static_size = floor(random(5, 20));9

}10

2. Variable geometry

61

The above is the excerpt from the full code required to draw two different sized ellipses (As
discussed in the previous chapter, the final two parameters of the ellipse function refer to
width and height.) Instead of placing a number in the function as in Chapter 1, “Getting
started,” we will use variables as they hold values (see Lines 4 & 6), especially global ones
that can be reused in different places of a program. Three steps are required to use variables:

1. Declare: Think of a name for the container you want to store the value in (it should make
sense to you and others to read, but of course there is scope for a conceptual approach
here). Declare with the syntax “let” in front. 12 (See line 1-2 from the above)
There are certain rules to follow in naming variables:

– Names usually begin with a lowercase string and not with a number or symbols.

– Names can contain a mix of uppercase and lower case strings, and numbers.

– Names cannot contain symbols.

2. Initialize/Assign: What is it that you want to store? A number? By assigning a value, you
will need to use the equal sign. There are four data types that are useful to know at this
introductory level:

– number for numbers of any kind: integer or floating-point.

– string for strings. A string may have one or more characters and it has to be used
with double or single quotation marks. For example: let moving_size = "sixty";

– boolean for true/false. For example: let moving_size = true;

– color for color values. This accepts Red, Green, Blue (RGB) or Hue, Saturation and
Brightness (HSB) values. For example: let moving_size = color(255,255,0); see more
from the “p5.js color reference” (https://p5js.org/reference/#/p5/color). 13

3. (Re)Use: How and when do you want to retrieve the stored data? If the variable changes
over time, you may wish to reuse it many times.

In the above code excerpt, steps 1 and 2 are combined and the code is written as let
moving_size = 50;. There are two variables: “moving_size” & “static_size” (see Lines 1 & 2,)
but we can say that the variable “static_size” is more dynamic than the other. This is
because the value changes according to mouse press as you can see in lines 8-10. (If you do
not foresee values changing, you can also consider using const 14 , a value that remains
unchanged for the entire program.)

There are two more variables in the example: mouseX and mouseY (see Line 6.) These variables
change and are subject to mouse movement for tracing the corresponding x and y
coordinates. If you want to know the exact mouseX and mouseY coordinates, you can also
use print() or console.log() to display the two values in the web console area. (A small
exercise: How to write a line of code to display or print the mouseX value on the
web console?)

https://p5js.org/reference/#/p5/color

Aesthetic Programming

62

Although it is commonplace to use the metaphor of a container to illustrate the variable as a
concept, it is important to add that each container has an address (we might say that it is in
a particular place on a shelf, and the computer needs to know where). A variable name can
be customized in a way that is readable and meaningful for humans but how it operates at
the level of execution does not take into the consideration of such meanings, in which
programming oscillates between natural language expression as well as computer operation
and execution (we will return to this double coding discussion in Chapter 7, “Vocable code”).

Technically speaking, by declaring a variable, it also declares an address where the computer
memory can hold the value. In short, each variable is stored in a block of computer memory
which is located inside physical and concrete memory like RAM that reconfigure the space.
Each block has an identifier called the memory address so that the computer knows where
to store it and retrieve it while the program is running. Creating and declaring a variable is not
only a programming issue, hardware is also involved in space allocation for data storage. As
such, software and hardware are inseparable, and it’s just that we aren’t able to see the inner
micro-workings of a computer whilst it is handling data. 15

Why use variables?

As you learn to program more complex software, you will discover that it is very common to
use variables to store values and data. More importantly, the value of variables can be
changed while a program is being run in real-time. The variables mentioned above: mouseX
and mouseY illustrate this point because the mouse’s coordinates change according to its
movement. We will also discuss variables again in the next chapter when we introduce the
concepts of array, loop, and repetition.

Another reason for using variables is that if you have longer lines of code, it is easier to have
all the variables that you have declared for the program in an overview. If a variable is used in
different parts of a complex program, you can simply change the value of the global variable
instead of changing the multiple parts in the entire program, and this is useful for
testing/refining the program without locating specific and multiple lines of code for
modification. This leads to the reusability of variables. Variables can be used in different
functions and more than once (and also as arguments passed to a function subroutine,
something we will also discuss in the next chapter). A good example is the static_size
variable in the sample code that is used to draw both the ellipse and the rectangle. As such,
variables in the sample code deal with the changing and compositional shape-in-space.

Additionally, it is also easier for others to read your code with a well-chosen variable name, or
at least the variable name can suggest certain behaviors or actions. As you progress, you
might write code collaboratively, or write a larger program with more lines of code, at which
point it is important to think of the readability of code.

2. Variable geometry

63

Other functions

This section briefly introduces some other new functions in the full source code. Drawing and
designing an emoji requires different decisions, in terms of shapes, color, and
spatial composition.

– noStroke(), strokeWeight(): These functions refer to the settings of a shape, where it has
an outline, and the weight of the border.

– stroke(), fill() and nofill(): These set the color of objects such as border, shapes, or
text. It takes RGB (as default) or HSB color. But if the function has a single parameter,
then it refers to gray scale shade between 0-255 16 . If the function has three parameters
like fill(255, 255, 0), then it means the object/shape/text will be filled with a yellow
color (the mix of red and green with no blue). There is an optional parameter called
“alpha”, which refers to the opacity of the color, e.g. fill(255, 255, 0, 127).

– rect(): This is similar to drawing an ellipse, but is used to display a rectangle.
– vertex(), beginShape() and endShape(CLOSE): These three functions are used for drawing

more complex forms using various vertices. The vertex() function indicates its x and y
coordinates, and all the vertices can be joined using the “CLOSE” argument in endShape().
The beginShape() is used to record the start of the vertex for a complex form like
a polygon.

– floor(): Since the random() function returns a floating-point number, floor() is used to
calculate the closest integer value.

– if (mouseIsPressed) {}: This is a conditional structure for a program, constantly referring
to mouse press actions. This is discussed in more detail below.

Conditional structures

Conditional structures are very useful as they allow you to set a different path by specifying
conditions. Indeed, a conditional decision is not specific to programming. For example, in
everyday life, you might say “If I am hungry, I should eat some food, if I am thirsty, I should
drink some water, otherwise I will just take a nap.”

//example in human language1

if (I am hungry) {2

 eat some food;3

} else if (thirsty) {4

 drink some water;5

} else{6

 take a nap;7

}8

Aesthetic Programming

64

The above is an example of “pseudocode” to demonstrate what making an everyday
decision might look like in programming. The keyword and syntax if is then followed by the
condition and checks whether a certain condition holds. As such, the whole if statement is a
“Boolean expression” — one of two possible values is possible, true or false, each of which
leads to a different path and action. In computer science, the Boolean data type has two
possible values intended to represent the two truth values of logic.

We have implemented a conditional logic in our sample code to constantly check if there is
any mousepressed actions. This is why the size of the ellipse changes when a mouse
is pressed.

Relational operators

If you have to create your own conditional statement with the if() syntax, there are multiple
combinations you can work with to create more complex expressions. For example, you can
have many different cases using the syntax else if, or a combination of logical operators,
such as the AND case here in another pseudocode example:

Here is a list of relational operators and logical symbols that can be used in
conditional statements.

 if (mouseIsPressed) {1

 static_size = floor(random(5, 20));2

 }3

if (I am hungry) && (I am in a good mood) {1

 print("go out");2

}3

1

 /*2

 Relational Operators:3

 > Greater than4

 < Less than5

 >= greater than or equal to6

 <= less than or equal to7

 == equality8

 === equality (include strict data type checking)9

 != not equal to10

 !== inequality with strict type checking11

 */12

13

 /*14

 Logical Operators: boolean logic:15

 && logical AND16

2. Variable geometry

65

Below is an example of a small sketch that uses a conditional structure and operators.
Although all the conditional “if” or “else-if” statements are true, the web console will only
print out “one.” This is because the program will exit the structure when the first condition is
met. In other words, sequence matters and the program will not run the other else-if
statements after executing the first true statement.

Basic arithmetic operators

You can also do arithmetic operations in programming, and this is commonly done in the
arguments of a function. Here is a list of basic arithmetic operators:

– add(+): For addition and concatenation, which is applicable to both numbers
and text/characters.

– subtract(-)
– multiply(*)
– divide(/)
– Special operators: increment (++), decrement (--)

 || logical OR17

 ! logical NOT18

 */19

20

 /*21

 Example:22

 if () {23

 //something here24

 } else if() {25

 //something here26

 } else{27

 //something here28

 }29

 */30

31

let x = 18;1

if (x > 10 || x <= 20) {2

 console.log("one");3

} else if (x == 18) {4

 console.log("two");5

} else if (x === 18) {6

 console.log("three");7

} else {8

 console.log("four");9

}10

Aesthetic Programming

66

You can try the following in the web console area:

Output:
 “6”

Output:
 “helloworld”

Discussion in class

1. Examine existing geometric emojis (https://gitlab.com/aesthetic-
programming/book/-/blob/master/source/2-VariableGeometry/emojis.jpeg) or those
available on your mobile phone, can you describe about the shape of an emoji? what
constitutes a face? What essential geometric elements do you need for a particular facial
expression? What has been lost in translation?

2. Reflect upon the complexity of human emotions, and their caricatures. What is your
experience using emojis? What are the cultural and political implications of emojis (you
might refer to the reading and introduction above)?

3. Beyond the face, take a look at more emojis
(https://www.pngfind.com/mpng/ohwmTJ_all-the-emojis-available-on-facebook-
russian-revolution/). 17 Is there anything you want to add?

4. Experiment with p5.js. How do you translate your thoughts into lines of code? You may
want to print the coordinates of the mouse press in the web console area to get a more
accurate position for your shapes.

While()

The human face makes a good starting point as we recognize it easily, even in its simplest
form, something Multi seems to verify with its minimal rendering of three typographic
elements. The face clearly occupies a central position in everyday life and social interaction,
and it almost goes without saying that its features are perceived to display our uniqueness

console.log(2*3);1

console.log("hello" + "world");1

https://gitlab.com/aesthetic-programming/book/-/blob/master/source/2-VariableGeometry/emojis.jpeg
https://www.pngfind.com/mpng/ohwmTJ_all-the-emojis-available-on-facebook-russian-revolution/

2. Variable geometry

67

and individuality. But this is a surface reading only. Emojis operate in this way and seem to
occlude the face of experience and its ability to express complex feelings. It is tempting to
think that emojis, despite their name, stop short of emotions altogether.

In A Thousand Plateaus , Gilles Deleuze and Félix Guattari conceive of the face as
“overcoded,” imposed upon us universally, resonating with some of the comments we made
earlier in this chapter about Unicode. Their main point is that the face — what they called the
“facial machine” — is tied to a specific Western history of ideas (e.g. the face of Jesus Christ).
This, in turn, situates the origins of the face with white ethnicity (despite Jesus’s birthplace)
and what they call “facialization” (the imposition onto the subject of the face) has been
spread by white Europeans, and thus provides a way to understand racial prejudice: “Racism
operates by the determination of degrees of deviance to the White man’s face…”. 18 The face
is thus understood as an “imperial machine,” subsuming language and other semiotic
systems. The face is part of a surface that promotes sameness and ultimately
rejects variations.

Facial recognition technologies that are capable of identifying or verifying a person from a
digital image or a video frame, seem to operate on these (imperialist) terms too. When a
person is identified in this way, the person’s facial shape and textures are matched against a
model based on a standardized dataset (we will return to this discussion in Chapter 4, “Data
capture”). Moreover, the datasets are based on a disproportionate number of white faces.
Facial recognition systems therefore notoriously struggle to identify black people. This has
led to significant problems not least when it comes to the use of these technologies
for policing.

Facial recognition systems also become unreliable when facial expressions vary, and even a
big smile can falsify the results, so there is some irony that a smiley in real-life is likely to
create difficulties in recognition (as if the social standard is unfriendliness). The iconic emoji
smiley seems to further stress the point. The face may be able to escape overcoding under
certain conditions, but emojis are quite literally “facial-machines” with prejudice built-in.
Herein lies a challenge to having fun with programming: How to escape the overcoding and
to develop alternative geometric shapes?

Something of this logic is evident in another article by Femke Snelting, “Other Geometries,”
which discusses how geometric shapes can help resist sovereign infrastructures. 19 Thinking
of something as simple as a circle, and how it is associated with collective forms in terms of
space and structure, Snelting writes.

“A circle is a simple geometric shape. […] Circles are mathematically defined as the
set of all points in a plane that are at the same distance from a shared center; its
boundary or circumference is formed by tracing the curve of a point that keeps
moving at a constant radius from the middle. […] Circles are omnipresent in
practices and imaginaries of collectivity. [… and yet] Their flatness provides little in
the way of vocabulary for more complex relational notions that attempt to include
space, matter and time, let alone interspecies mingling and other uneasy alliances.
The obligation to always stay at the same distance from the center promises a

Aesthetic Programming

68

situation of equality but does so by conflating it with similarity. Circles divide spaces
into an interior and an exterior, a binary separation that is never easy to overcome.
We urgently need other axes to move along.” 20

Snelting is looking for other geometries that can escape normative configurations of
collectivity. She also refers to the works of Zach Blas, known for his artistic interventions with
facial recognition systems (Facial Weaponization Suite , 2011-14), to point to the geometric
spaces between nodes and edges, and to draw more attention to relations. Beyond network
imaginaries of decentralized and distributed forms that have historically been part of
rethinking centralized power structures, the idea is to “bend our infrastructural desires in
other directions,” making further reference to the work of Anna Tsing and “messy
geometries” inspired by Mycelium, the branching, thread-like root structures of fungi. 21

The challenge then is to rethink normative geometries, to turn them upside down and inside
out. Herein lies the purpose of the chapter, to escape geometric overcoding and to develop
alternatives. Having fun with programming in this sense is the ability to modify forms and to
diverge from established rules. When it comes to programming, the rules can be applied
differently, adapted or modified, and even transformed altogether.

MiniX: Geometric emoji

Objective:

– To experiment with various geometric drawing methods and to explore
alternatives, particularly with regard to shapes and drawing with colors.

– To reflect on the politics/aesthetics of emojis on the basis of the assigned texts.

For additional inspiration:

– AIMoji by Process Studio (2019), https://process.studio/works/aimoji-ai-
generated-emoji/, and as part of “Uncanny Values,” Vienna Biennale (2019),
https://process.studio/works/uncanny-values/.

Some articles on emoji culture:

– Steve Witt, “Chinese Characters as Ancient ‘Emoji’,” Glocal Notes (2015),
https://publish.illinois.edu/iaslibrary/2015/10/21/chinese-characters/.

– Michael Grothaus, “Women Finally Get a Menstruation Emoji,” Fastcompany
(2019), https://www.fastcompany.com/90302946/women-finally-get-a-
menstruation-emoji.

Tasks (RunMe):

Explore shapes, geometries, and other related syntax (via p5.js references) and
design two emojis, https://p5js.org/reference/.

https://process.studio/works/aimoji-ai-generated-emoji/
https://process.studio/works/uncanny-values/
https://publish.illinois.edu/iaslibrary/2015/10/21/chinese-characters/
https://www.fastcompany.com/90302946/women-finally-get-a-menstruation-emoji
https://p5js.org/reference/

2. Variable geometry

69

Questions to think about (ReadMe):

– Describe your program and what you have used and learnt.
– How would you put your emoji into a wider social and cultural context that

concerns a politics of representation, identity, race, colonialism, and so on? (Try
to think through the assigned reading and your coding process, and then expand
that to your own experience and thoughts - this is a difficult task, you may need
to spend some time thinking about it).

Required reading

– Roel Roscam Abbing, Peggy Pierrot and Femke Snelting, “Modifying the Universal,” in Helen
Pritchard, Eric Snodgrass & Magda Tyżlik-Carver, eds., Executing Practices (London: Open
Humanities Press, 2018), 35-51, http://www.data-browser.net/db06.html.

– p5.js | Simple Shapes, https://p5js.org/examples/hello-p5-simple-shapes.html.

– Daniel Shiffman, “1.3,1.4,2.1,2.2: Code! Programming with p5.js,” (2018)
https://www.youtube.com/watch?v=yPWkPOfnGsw&list=PLRqwX-V7Uu6Zy51Q-
x9tMWIv9cueOFTFA&index=2.

– Femke Snelting, “Other Geometries,” transmediale journal 3, October 31 (2019),
https://transmediale.de/content/other-geometries.

Further reading

– Crystal Abidin and Joel Gn, eds., “Histories and Cultures of Emoji
Vernaculars,” First Monday 23, no. 9, September (2018),
https://firstmonday.org/ojs/index.php/fm/issue/view/607.

– Christian Ulrik Andersen and Geoff Cox, eds., A Peer-Reviewed
Journal About Machine Feeling 8, no. 1 (2019),
https://aprja.net//issue/view/8133.

– Derek Robinson, “Variables,” in Matthew Fuller, ed., Software
Studies: A Lexicon (Cambridge, MA: MIT Press, 2008).

http://www.data-browser.net/db06.html
https://p5js.org/examples/hello-p5-simple-shapes.html
https://www.youtube.com/watch?v=yPWkPOfnGsw&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=2
https://transmediale.de/content/other-geometries
https://firstmonday.org/ojs/index.php/fm/issue/view/607
https://aprja.net//issue/view/8133

Aesthetic Programming

70

Notes

1. Linus Torvalds and David Diamond, Just
for Fun: The Story of an Accidental
Revolutionary (Knutsford: Texere
Publishing, 2001), see http://en.wikipedi
a.org/wiki/Just_for_Fun. Other
examples include Jeremy Gibbons and
Oege de Moor, The Fun of
Programming (London: Palgrave
Macmillan, 2003).

2. See the children’s book: Vicky Owyang
Chan, Geometry Is Fun For Me
(Indianapolis, IL: Dog Ear Publishing,
2017).

3. Olga Goriunova, Fun and Software:
Exploring Pleasure, Paradox and
Pain in Computing (New York, London:
Bloomsbury, 2014), 4.

4. Femke Snelting, “Other Geometries,”
transmediale journal 3 (October 31,
2019, https://transmediale.de/conten
t/other-geometries.

5. Roel Roscam Abbing, Peggy Pierrot and
Femke Snelting, “Modifying the Universal,”
Executing Practices , Helen Pritchard,
Eric Snodgrass & Magda Tyżlik-Carver,
eds. (London: Open Humanities Press,
2018), 35-51, http://www.data-browser.n
et/db06.html. Alternatively, Femke
Snelting has a lecture video in 1 hr 15 mins
on the similar topic, see https://www.you
tube.com/watch?v=ZP2bQ_4Q7DY.
Other references include: Crystal Abidin
and Joel Gn, “Between Art and
Application: Special Issue on Emoji
Epistemology,” First Monday 23, no. 9
(September 3, 2018); Luke Stark, “Facial
recognition, emotion and race in animated
social media,” First Monday 23, no. 9
(September 2018), 3; Miriam E Sweeney
and Kelsea Whaley, “Technically White:
Emoji Skin-tone Modifiers as American
Technoculture,” First Monday 24, no. 7
(1 July 1, 2019).

6. See https://en.wikipedia.org/wiki/Unico
de#Origin_and_development.

7. See https://www.telegraph.co.uk/techn
ology/2016/07/15/new-gender-equality
-emoji-to-show-women-at-work/.

8. Abbing, Pierrot and Snelting, Modifying
the Universal , 210.

9. The project employs a machine learning
algorithm and use the dataset of 3145
existing emojis as the input data to
generate various uncanny emoji patterns.
See https://process.studio/works/aim
oji-ai-generated-emoji/. The project
featured as part of the exhibition
“Uncanny Values,” Vienna Biennale
(2019), https://process.studio/works/u
ncanny-values/. We discuss machine
learning in more detail in chapter 10.

10. See http://www.o-r-g.com/apps/multi.
Multi also provides variations of book
covers for the DATA browser series
published by Open Humanities Press, htt
p://www.data-browser.net/.

11. See p5.js random reference at https://p
5js.org/reference/#/p5/random.

12. let is introduced in ES6 (ECMAScript-
scripting language specification
standardization) to declare a variable,
although var is still commonly used. The
difference between the two is that let is
block scoped, while var is function scoped.
When it comes to let; if the same variable
is declared both globally and locally, the
local value will be restricted to the specific
block of code and won’t be overridden. For
more on the distinction, see https://dev
eloper.mozilla.org/en-US/docs/Web/Ja
vaScript/Reference/Statements/var
and https://developer.mozilla.org/en-U
S/docs/Web/JavaScript/Reference/St
atements/let.

13. See p5.js color reference, https://p5js.or
g/reference/#/p5/color.

14. See p5.js const reference, https://p5js.o
rg/reference/#/p5/const.

15. Chun discusses symbolic programming
languages that (as higher-level
languages) hide the computational
process. This both empowers users to
create, but conversely mystifies the inner
workings of machines. Here variables are
some of the many examples that
computer operations abstract. We will
discuss this in Chapter 6, “Object
Abstraction”. See Wendy Hui Kyong Chun,
“On Software, or the Persistence of Visual
Knowledge,” Grey Room 18 (January
2005): 38, https://doi.org/10.1162/1526
381043320741.

16. Red, Green and Blue are the so-called
primary colors that, when added
together, produce a broad array of colors.
RGB color values range from 0 to 255 with
a total of 256 possible values for each
primary color. The reason behind is that
all the colors are in 24 bit format, the red
(R) takes 8 bit, the green (G) takes 8 bit
and the blue (B) takes the remaining 8
bits. 2 binary values are stored for each
bit, therefore 2^8th power is 256 which is
the exact possible range of each color.
The RGB system is closely related to the
nature of computation in a binary system.

17. See https://www.pngfind.com/mpng/o
hwmTJ_all-the-emojis-available-on-faceb
ook-russian-revolution/.

18. Gilles Deleuze and Félix Guattari, A
Thousand Plateaus: Capitalism and
Schizophrenia (Minneapolis: University of
Minnesota Press, 1987), 178.

19. Snelting, “Other Geometries.”
20. Snelting, “Other Geometries.”
21. Anna Lowenhaupt Tsing, The Mushroom

at the End of the World: On the
Possibility of Life in Capitalist Ruins
(Princeton, NJ: Princeton University Press,
2017).

22. The series of works Facial
Weaponization Suite exposes some of
the inequalities associated with biometric
facial recognition by making collective
masks, including Fag Face Mask a
response to scientific studies that say
they can determine sexual orientation
through rapid facial recognition
techniques, and another mask that
explores the inability of biometric
technologies to detect dark skin. See htt
p://www.zachblas.info/works/facial-we
aponization-suite/.

23. See the tool p5.playground developed by
Yining Shi, https://1023.io/p5-
inspector/.

http://en.wikipedia.org/wiki/Just_for_Fun
https://transmediale.de/content/other-geometries
http://www.data-browser.net/db06.html
https://www.youtube.com/watch?v=ZP2bQ_4Q7DY
https://en.wikipedia.org/wiki/Unicode#Origin_and_development
https://www.telegraph.co.uk/technology/2016/07/15/new-gender-equality-emoji-to-show-women-at-work/
https://process.studio/works/aimoji-ai-generated-emoji/
https://process.studio/works/uncanny-values/
http://www.o-r-g.com/apps/multi
http://www.data-browser.net/
https://p5js.org/reference/#/p5/random
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/var
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let
https://p5js.org/reference/#/p5/color
https://p5js.org/reference/#/p5/const
https://doi.org/10.1162/1526381043320741
https://www.pngfind.com/mpng/ohwmTJ_all-the-emojis-available-on-facebook-russian-revolution/
http://www.zachblas.info/works/facial-weaponization-suite/
https://1023.io/p5-inspector/

3. Infinite loops

71

3. Infinite loops

3. Infinite loops

setup()

MiniX:
Designing a throbber

Required reading

start()

While()

Source code

Exercise in class
(Decode) FunctionTransform

Exercise in class

Reading
Asterisk Painting

push() and pop()Exercise in class

Source code

Exercise in class ArraysConditional statements Loops

Notes

Further reading

73

74

75

77

78

79

79

81
83

83

84
86

87

89

89

92

93

94

95

96

Contents

– setup()

– start()

– Exercise in class (Decode)

– Source code

– Function

– Exercise in class

– Transform

– push() and pop()
– Exercises in class

– Asterisk Painting

– Source code
– Exercise in class

– Arrays

– Conditional statements

– Loops

– While()

– MiniX: Designing a throbber

– Required reading

– Further reading

– Notes

3. Infinite loops

73

Figure 3.1: Early alchemical illustration of
ouroboros accompanied by the text ἓν τὸ πᾶν

(“The All is One”) from the work of
Cleopatra the Alchemist (10th Century).

Image from Wikipedia

setup()

Loops offer alternative imaginaries, as is the case of
the ancient image of a serpent eating its own tail.
Ouroboros, from the Greek, expresses the endless
cycle of birth and death, and therefore stands for the
ability of processes to infinitely renew themselves.
Alongside evocative references to autocannibalism
and alchemy, loops are related to control and
automation tasks, as well as repetitive procedures in
everyday situations such as those heard in repeating
sections of sound material in music. 1 In
programming, a loop allows the repeated execution
of a fragment of source code that continues until a
given condition is met, such as true or false. Indeed a
loop becomes an infinite (or endless) if a condition
never becomes false.

It was mathematician and author Augusta Ada Byron
Lovelace who was one of the first to introduce and
illustrate the concept of a programmatic loop in the
early nineteenth century. She recognized that there
were repeatable operations in the conceptual design
of the first ever, automatic, general-purpose
computing machine, Charles Babbage’s Analytical

Engine. A loop, which she called a “cycle,” appears in her “Note G” on the Analytical
Engine 2 that describes the so-called Bernoulli numbers program, as in the diagram below.
It utilizes two loops to indicate the repetition of a set of instructions with conditions, 3
thereby minimizing efforts to write a repeatable operation in duplicate. As such, loops
address repeatable and operational time.

Figure 3.2: Diagram for the computation by the Engine of the Numbers of
Bernoulli, from “Note G” by Ada Lovelace (1843). Image from

Wikimedia Commons

Aesthetic Programming

74

Loops in contemporary programming are highly influenced by these early insights into the
handling of repeated machine operations expressed in diagramatic form. High-level
programming languages such as p5.js include this loop concept, allowing a fragment of
source code to be repeatedly executed, as in the example of the draw() function that will run
continuously until the program is stopped or using the syntax noLoop(). Loops are some of
the most basic and powerful of programming concepts.

The main example for this chapter is the graphical spinning wheel icon of a preloader, or so-
called “throbber,” 4 that indicates when a program is performing an action such as
downloading or intensive calculations. We consider this an evocative symbol as it illuminates
the discrepancy between what we think we know and what we don’t know about the hidden
machine labor, and the complexity of multiple temporalities that run during any given
computational operation. 5 It is a good icon to illustrate how loops work, allowing us to
contemplate the entanglement of perceptible streams and computational logics, as well as
how we experience the historical present through digital media. 6 As we shift from static
objects to moving ones, the animated throbber will guide the programming tasks related to
thinking about transformation (such as rotation and translation), but will also act as a
suitable analytical object for us to think through the idea of loops, the related temporal
elements, and time-related syntaxes more conceptually.

start()

We usually encounter the ubiquitous spinning icon while loading or streaming. It shows that a
certain operation is in progress, but what exactly is happening, and how long this will take, is
not at all clear. There is no indication of progress or status as is the case with a progress bar,
for instance. We see the icon spinning, but it explains little about what goes on in the
background or about timespan. Learning to program a throbber, and, subsequently
examining Asterisk Painting by John P. Bell — that creates a series of asterisks by
repeatedly printing the number of milliseconds that have passed since the painting started —
will help you gain insight into the way programming employs transformational movement
and loop structures, and, at the same time, an insight into the temporal operations of
computational processes.

3. Infinite loops

75

Exercise in class (Decode)

As mentioned above, this chapter shifts from programming static objects to a mixture
of both static and moving objects. Our example is circular and spins, as if it were
eating its own tail.

Figure 3.3: The runme of sample code - sketch 3_1

RunMe, https://aesthetic-
programming.gitlab.io/book/p5_SampleCode/ch3_InfiniteLoops/sketch3_1/

Can you describe the various elements and how they operate computationally in your
own words?

https://aesthetic-programming.gitlab.io/book/p5_SampleCode/ch3_InfiniteLoops/sketch3_1/

Aesthetic Programming

76

1. Speculation

– Based on what you see/experience on the screen, describe:
– What are the elements? Come up with a list of features.

– What is moving and what isn’t?

– How many ellipses are there in the middle?

– Try to resize the window and see what happens.

– Further questions:
– How do you set the background color?

– How does the ellipse rotate?

– How can you make the ellipse fade out and rotate to the next position?

– How can you position the static yellow lines, as well as the moving ellipses
in a single sketch?

2. Experimentation

– Tinker with the source code

– Try to change some of the parameters, e.g. background(), framerate(), the
variables inside drawElements()

– There are some new functions you can check in the p5.js reference (e.g.
push(), pop(), translate(), rotate())

3. Mapping

– Map some of the findings/features from the speculation you have done to the
source code. Which block of code relates to your findings?

– Can you identify the part/block of code that responds to the elements that
you have speculated on?

4. Technical questions/issues

– let cir = 360/num*(frameCount%num); (see Line 21)
with the “modulo operator” 7 that computes the remainder after division,
explain what this line means and does?

5. Other conceptual questions

– Where do you often see this icon and what’s your experience?

– If this icon is something related to waiting (or wasting) time, how much do you
know about the time(s) in relation to machines?

– One of the important aspects of machine times is about synchronization, can
you describe your experience in relation to synchronization processes?

3. Infinite loops

77

Source code

//throbber1

function setup() {2

 //create a drawing canvas3

 createCanvas(windowWidth, windowHeight);4

 frameRate(8); //try to change this parameter5

}6

7

function draw() {8

 background(70, 80); //check this syntax with alpha value9

 drawElements();10

}11

12

function drawElements() {13

 let num = 9;14

 push();15

 //move things to the center16

 translate(width/2, height/2);17

 //360/num >> degree of each ellipse's movement;18

 //frameCount%num >> get the remainder that to know which one19

 //among 8 possible positions.20

 let cir = 360/num * (frameCount%num);21

 rotate(radians(cir));22

 noStroke();23

 fill(255, 255, 0);24

 // the x parameter is the ellipse's distance from the center25

 ellipse(35, 0, 22, 22);26

 pop();27

 stroke(255, 255, 0, 18);28

 // static lines29

 line(60,0,60,height);30

 line(width-60, 0, width-60, height);31

 line(0, 60, width, 60);32

 line(0, height-60, width, height-60);33

}34

35

function windowResized() {36

 resizeCanvas(windowWidth, windowHeight);37

}38

Aesthetic Programming

78

Function

A function in p5.js starts with the syntax function() {}, containing “a self-contained section of
code” 8 to peform a certain task. The most basic built-in functions in p5.js are setup() and
draw() that specify the contained code in relation to a particular purpose such as setting up
the environment in which to run the program, as well as doing things over time. Other built-in
functions in the sample code provided, such as windowResized(), serve to read just the canvas
size if there is any window resizing event. The canvas size is not set at fixed dimensions, but is
subject to the window size that you have adjusted as illustrated in the code. This was also
discussed in the preceding chapter: createCanvas(windowWidth, windowHeight);. The function
windowResized() suggests that an “event listener” — a procedure or function in a computer
program that monitors for an event to occur — initiates at the code level to not only run once,
but “constantly.” It is “listening” to events of window resizing specifically, and similar to other
listening events such as mouseIsPressed() that was introduced in the previous chapter. The
windowResized() function is considered asynchronous, which means some other events occur
concurrently with the main flow of the program such as, for instance, drawing shapes.

Alongside built-in functions, the sample code contains the custom function function
drawElements(); which is invoked in Line 13: drawElements(); within the draw() function. Defining
a function is relatively simple in JavaScript. Type the keyword “function” then follow it with
the name that you want to give your function. The function name “drawElements” gives you a
sense of what this function does, which is draw ellipses, lines of a particular size, position,
and color, as well as drawing ellipses and lines to rotate clockwise or statically remain in
place. There are many ways of drawing the same result, but as we are still in the early stages
of learning to program, we will therefore work on an example that can do the same, but
aligns better with our learning progress. With this in mind, some of the code is intentionally
written in a way that is less efficient, but serves the purpose of illuminating key concepts.

Programmers like to split large tasks into smaller operations and procedures, so they are easier
to structure, manage, debug, read, and are easier to collaborate on with multiple
programmers. In function drawElements();, the sample code is simply separated from the
function draw(), clearly indicating that this particular part of the code relates to drawing the
various on-screen elements. Of course you could also separate the drawing of ellipses and lines,
and it is a subjective and situated decision to decide how best to separate the different tasks.

There is another type of function where you can specify tasks with arguments that are
passed to the function and receive a return value. See the example below:

let x = sum(4, 3, 2); 1

print(x);2

//passing values four as a, three as b, two as c to the function sum3

function sum(a, b, c) {4

 return a + b + c; //return statement5

}6

3. Infinite loops

79

Output:
 “9”

Exercise in class

You can also try to type/copy the above code into your own sketch, where it will return
the number 9 as the output in the web console because this is the result of the sum of
the values 4, 3 and 2. These values are called “arguments” that are passed to the
function (i.e. sum()). In the example, the parameters as variables a, b and c equals to
the actual values 4, 3 and 2 as arguments, but the value of the variables can be
changed. The function “sum” can be reused if you pass on other arguments/values to
it, as for instance another line of code let y = sum(5,6,7); and the return value of y
would be 18. You can try to come up with your own functions and arguments.

Transform

In general, the transform-related functions 9 apply a two-dimensional or three-dimensional
transformation to an element or object. In the sample code provided with the throbber, two
specific transformational functions were used to move the canvas and create an illusion of
object transformation. (It is important to know that the transformation is done at canvas
background level, not at the individual shape/object level.)

Aesthetic Programming

80

Figure 3.4: Moving the coordinate system at canvas level. Image
from processing.org

1. translate(): This function displaces/moves objects within the display window. For
example, moving the canvas to the center will position the whole sketch at the center
too (translate(width/2, height/2);). The ellipse is drawn as ellipse(35, 0, 22, 22) which
takes (35, 0) as the x and y coordinates, and “22” as the size. If we don’t have the
translate() function upfront, the ellipse will be placed at the top left corner instead
(because the x coordinate value “35” is the distance of the rotating ellipses from the
center position). By moving the coordinate origin to the middle using the translate()
function, the ellipses is placed in the middle of the canvas, because the coordinate orign
(0,0) has moved to the center of the screen. Building upon the previous chapter on the
spatial dimension of a coordinate system, “translate” adds another layer to think about
moving and positioning objects using canvas.

2. rotate(): In this sample code with the throbber, the use of the function rotate() makes
the ellipse rotate through a particular number of degrees. The default unit for rotation is
radians. As such, the code is written as rotate(radians(cir));. The function rotate() takes
radians in its default mode, but if you want to change to degrees all you have to do is
add the code angleMode(DEGREES).

In order to continue expanding on spatial relationships, the entanglement of time and space
is made apparent in this example by using the rotate() function that operates alongside
other time-related syntax in draw(). There are a total of 9 ellipses (indicated as let num=9;),
and each is separated from the next by 40 degrees (i.e 0.968 rad) which is derived from
“360/9.” A circle has 360 degrees and to rotate the ellipse over time, it requires the time
element to calculate when, how, and where to move. This is how the function frameCount()
works as it counts the number of frames displayed since the program started. 10 The Line 21
let cir = 360/num*(frameCount%num); illustrates the use of a “modulo” operation to find the
remainder or the number that’s left after it is divided by another value. As such, the value of

3. Infinite loops

81

the variable cir is limited to multiples of 40: “0, 40, 80, 120, 160, 240, 280 and 320.” On the
basis of the cir value, the program follows such a sequence over time to rotate one after the
other, based on the original position, then repeats continuously.

push() and pop()

Functions of push() and pop() are commonly used to save the current style and restore
settings respectively. Style as in color and setting as in rotate and translate. In the sample
code, rotation is only applied to the centered ellipses when four lines at each side are fixed.
The following excerpt of code will help to explain:

Aesthetic Programming

82

The last four lines describe the drawing of the four static yellow lines. Logically speaking, the
translate and rotate functions should also apply to these lines, but because the pop()
function is placed right after drawing all the ellipses it does not impact the lines (see Figure
3.5). But if you move the line pop() to the end, then the lines will also rotate and translate
(see Figure 3.6). This illustrates how push() and pop() can be used to save and restore styles,
and how their placement matters. 11

Figure 3.5: Different placement of the pop() function
- Four static yellow lines

Figure 3.6: Different placement of the pop() function
- Four rotating yellow lines

function drawElements() {1

 let num = 9;2

 push();3

 //move things to the center4

 …5

 pop();6

 stroke(255, 255, 0,18);7

 //static lines8

 line(60, 0, 60, height);9

 line(width-60, 0, width-60, height);10

 line(0, 60, width, 60);11

 line(0, height-60, width, height-60);12

}13

3. Infinite loops

83

Exercises in class

1. Change the arguments/values, as well as the position/sequence of the sample
code to understand the functions and syntax such as the variable num, the
transformational functions translate() and rotate(), as well as saving and restoring
current style and transformations such as push() and pop().

2. We have explained how to use rotate() to display the ellipses at various degrees of
rotation, but how about the fading in and out of each ellipse in the sketch? (Hint: as
this is repeatedly faded in and out, the background() syntax under the function
draw() is key to producing such effects.)

3. This exercise is about structuring code. How would you restructure the sample code
so that it is easier for others to understand, but still maintains the same visual
outcome? There are no right or wrong answers, but some pointers below might
facilitate discussion:

– You may rename the function and/or add new functions

– Instead of having drawElements(), you might have something like drawThrobber()
and drawLines()?

Asterisk Painting

The following section will move from repetition and regularity, to repetition and difference.
Artist and software developer John P. Bell made an artwork called Asterisk Painting , 12
that consists of a number of throbber-like spinning patterns, however each throbber (or what
he calls “asterisk”) spins differently, varying in color and texture. Many of the syntaxes Bell
used are related to temporality, for example the setting up of a timer, the calculation in
milliseconds, the speed of rotation, the time to wait before starting a new cycle, and so on, in
which programming enables the re-negotiation of time to “develop alternative time practices
and experiences” through manipulating time-related functions. 13 Also, on a closer
inspection, the asterisks are not geometric shapes, but are constituted by a series of
numbers which refer to the milliseconds counter that line up to form a straight line.

Aesthetic Programming

84

Figure 3.7 : Asterisk Painting (2014) by John P. Bell. Courtesy of the artist

According to Bell,

“Asterisk Painting is programmed to create a series of asterisks by repeatedly
printing the number of milliseconds that have passed since the painting started. If
left to run by itself it will do so; however, when started on a real system, delays
external to my artwork may make the asterisks look more like spots […]”

Source code

The original piece was written in Processing and has been modified, and ported to p5.js. It is a
much more complex program than the first one, but we still wanted to include this as an
addition to this chapter as it helps to demonstrate the potential for further developing a
looping sketch and reflect more deeply on infinite loops, and the use of time-related syntaxes.

let xDim = 1000; //canvas size-width1

let yDim = 600; //canvas size-height2

let timer = 0;3

let speed = 100; //the speed of rotating , default 1004

let maxSentences = 77; //original: 775

let sentences = 0;6

let xPos = [1, 2, 3, 4, 5]; //original: 8 columns7

let yPos = [1, 2, 3, 4]; //original: 5 rows8

let xCtr = 0;9

let yCtr = 0;10

let waitTime = 10000;11

3. Infinite loops

85

let itr = 0; // no. of iteration12

let milliStart = 0;13

let currentMillis;14

let fillColor;15

16

function setup(){17

 createCanvas(xDim, yDim);18

 background(240);19

 /*calculate the x-position of each asterisk as20

 an array (xPos[]) that starts with an array index[0]*/21

 for(let i = 0; i < xPos.length; i++) {22

 xPos[i] = xPos[i] * (xDim / (xPos.length+1));23

 }24

 /*calculate the y-position of each asterisk as25

 an array (ypos[]) that starts with an array index[0]*/26

 for(let i = 0; i < yPos.length; i++) {27

 yPos[i] = yPos[i] * (yDim / (yPos.length+1));28

 }29

 fill(0); //counter color at the bottom left30

 textAlign(LEFT, CENTER);31

 text(itr, 10, yDim-30); //display counter32

 fillColor = color(33

 floor(random(0, 255)),floor(random(0, 255)),floor(random(0, 255))34

);35

}36

37

function draw(){38

 //millis means millsecond since starting the program, like frameCount39

 currentMillis = floor(millis() - milliStart);40

 if(currentMillis > timer){41

 push()42

 translate(xPos[xCtr], yPos[yCtr]); //rows and cols43

 rotate(radians((360/8)* (millis()/speed))); //rotate in itself44

 timer = currentMillis + speed; //the time for the next loop45

 textSize(12);46

 fill(fillColor);47

 /* about the time string written in the form of an asterisk,48

 and it starts with 0 always.49

 nf:format numbers into strings and adds zeros in front50

 [https://p5js.org/reference/#/p5/nf]51

 3 digits in front and 0 digit after the decimal. */52

 text(nf(currentMillis, 6), 3, 0);53

 sentences++;54

 if(sentences >= maxSentences){ //reach the max for each asterisk55

 xCtr++; //move to next array56

 //meet max cols, and need to go to next row57

 if(xCtr >= xPos.length) {58

Aesthetic Programming

86

Exercise in class

– RunMe, https://aesthetic-
programming.gitlab.io/book/p5_SampleCode/ch3_InfiniteLoops/

– Read the source code above. A reminder of the code comments:
1. // … indicates a single line comment

2. /* … */ indicates multiple lines comments
– Use the decoding method that we introduced previously in this chapter, try to

speculate, experiment, and map your thoughts to the source code.

 xCtr = 0;59

 yCtr++; //next row60

 /* the program reaches the max no. of rows on a screen61

 (i.e after reaching the no. of max cols);62

 the screen is filled > reset everything and update the counter*/63

 if(yCtr >= yPos.length){64

 yCtr = 0;65

 background(240);66

 //add counter (iteration)67

 itr++;68

 pop();69

 //counter's display color70

 fill(0);71

 //change the counter display again72

 text(itr, 10, yDim-30);73

 //wait for next round for starting the first asterisk74

 let wait = floor(millis() + waitTime);75

 while(millis() < wait){}76

 //reset the starting time77

 milliStart = millis();78

 //reset the timer79

 timer = 0;80

 push();81

 }82

 }83

 sentences = 0;84

 fillColor = color(85

 floor(random(0,255)),floor(random(0,255)),floor(random(0,255))86

);87

 }88

 pop(); //restore previous state89

 }90

}91

https://aesthetic-programming.gitlab.io/book/p5_SampleCode/ch3_InfiniteLoops/

3. Infinite loops

87

– Speculation: Describe what you see/experience on screen.
– What are the elements on screen?
– How many asterisks are there on screen and how are they arranged?
– What is moving and how does it move?
– What makes each asterisk spin/rotate and when does it stop to create a

new one?
– Can you locate the time-related syntax in this sketch?

– Experimentation: Change some of the code’s arguments
– Try to change some of the values, e.g. the values of the global variables
– Which new syntax and functions didn’t you know? (Check them out in the

p5.js reference.)
– Mapping: Map the elements from the speculation to the source code

Arrays

To be able to get a deeper understanding of the source code, you only need a few more
fundamental concepts of programming. The first one is “Array,” which is commonly
understood as a list of data and is related to previous concepts such as variable and data
types. If we need to work with a chunk of data, such as a collection of words, you can use
arrays instead of making separate variables. For example:

We can follow a similar structure to our previous approach using variables:

1. Declare: Think of a name you want to use to store the list of values. The symbol [] in let
words = [] indicates “words” is structured as an array, but how many words is unknown
and hasn’t been specified with just this line of code.

2. Initialize/Assign: Given the example above, there are three text values to store in
quotations (this indicates they are “String” data types): “what,” “are,” and “arrays.”
Since an array is a list of values and it is needed to be identified individually, “an array
index” within a square bracket is used to represent the position of each piece of data in
an array. It starts with [0] as the first item, then [1] as the second, and so forth.
Therefore words[0] ="what" means that the first index item of the array words is a string
data type and with the value “what.”

//example1

let words = [] //array -> start with 02

words[0] = "what";3

words[1] = "are";4

words[2] = "arrays";5

console.log(words[2]); //output: arrays6

console.log(words.length); //output: 37

Aesthetic Programming

88

3. Re(use): The console.log() function is an example that indicates how you can retrieve
and use the data, how you can print it in the web console area, or how you can draw on
a canvas.

The syntax arrayname.length is used to ask how many items there are in an array.

Let’s look at the sample below from Asterisk Painting :

This is a slightly different way of declaring an array. It combines both the declaration and
initialization/assignment into a single line to both declare the array names as xPos and yPos
with the term let, and then assigns the numeric values into the array index, which refers to
the number of columns and rows respectively. Think about it like this: the program needs to
know how many asterisks should be drawn on the screen before moving on to the next row
as well as when to restart (the asterisks fill the entire canvas in terms of reaching the
maximum number of rows and columns.)

As the array index starts with [0], therefore each index has mapped the value in this way:

let xPos = [1,2,3,4,5]; → The xPos.length is 5 and that indicates 5 values are being stored in
this array: xPos[0] = 1, xPos[1] = 2, xPos[2] = 3, xPos[3] = 4, xPos[4] = 5.

let yPos = [1,2,3,4]; → The yPos.length is 4 and that indicates 4 values are being stored in
this array: ypos[0] = 1, yPos[1] = 2, yPos[2] = 3, yPos[3] = 4.

The above two arrays store each asterisk’s center position in the form of x and y coordinates.

There are also methods of adding or removing an array index:

array.push(value) 14 → To add a value to the end of the array. Example: xPos.push(6) will
extend the index to xPos[5] = 6.

array.splice() 15 → This will remove a range from an array index, or remove the existing
index, and replace it with new indexes with other values.

let xPos = [1, 2, 3, 4, 5];1

let yPos = [1, 2, 3, 4];2

3. Infinite loops

89

Conditional statements

The discussion of conditional statements in the previous chapter will make it easier to follow
Asterisk Painting ‘s code. We follow the conditional structure (if-then) built into the program
in order to know when to move from one asterisk to the next.

The value of the variable maxSentences is 77 (refer to Line 5 from the source code), therefore
each asterisk contains 77 sentences (in the form of a line that contains numbers). The other
variable sentences counts each line and the program checks whether the current sentences
count has reached its maximum. “If” the asterisk reaches 77 sentences “then” it will move to
the next one and the sentences counter will be reset to zero (Line 84) and start counting
again. The logic repeats across all the asterisks within the draw() function.

Loops

The core concept of a loop is that it enables you to execute a block of code many times. For
example, if you have to draw one hundred lines that are placed vertically one after the other,
you can of course write one hundred lines of code using the syntax: line().

A “for-loop” allows code to be executed repeatedly, and so provides an efficient way to draw
the line one hundred times by setting up a conditional structure, counting the number of
lines that have been drawn and counting the maximum number of lines. Similarly, in this
sketch, there are some elements needed to run repeatedly, but there is an end, such as
calculating the center point using the exact x and y coordinates for each asterisk which are
based on the width and height of the canvas. Knowing how many columns and rows make up
a canvas allows us to know the values of the center point for drawing each asterisk.

To structure a for-loop, you need to ask yourself:

– What are the things/actions that you want to repeat in a sequence or pattern?
– More specifically, what is the conditional structure and when do you want to exit the loop?
– What do you want to do when this condition is, or is not, met?

if(sentences >= maxSentences){ //reach the max for each asterisk1

 //move to the next one and continues;2

}3

Aesthetic Programming

90

The following is an excerpt from Asterisk Painting (Lines 20-29):

See the structure of a for-loop:

Figure 3.8 A for-loop

Figure 3.8 shows you what a for-loop consists of:

1. A variable declaration and initialization: Usually starts with 0

2. A specificed condition: The criteria to meet the condition

3. Action: What you want to happen when the condition is met

4. Loop for next: For the next iteration (usually incremental/decremental).

This block of code from the above example describes the position of each asterisk in terms
of its x and y coordinates (the center point [x, y] of each asterisk). Since there are 5 columns
(xPos) and 4 rows (yPos) which have been defined in global variables, the program needs to
know the coordinates precisely. The overall formula to locate the position, for example xPos,
is to divide the width of the canvas by the number of asterisks horizontally, and add one (see
Figure 3.9). As such, the code can be understood as follows: calculate the xPos[i] for each
iteration with the starting point 0. Additionally, each iteration will increase the count by 1 until
it reaches the maximum number of asterisks in a row (i < xPos.length).

/*calculate the x-position of each asterisk as1

an array (xPos[]) that starts with an array index[0]*/2

for(let i = 0; i < xPos.length; i++) {3

 xPos[i] = xPos[i] * (xDim / (xPos.length+1));4

}5

/*calculate the y-position of each asterisk as6

an array (ypos[]) that starts with an array index[0]*/7

for(let i = 0; i < yPos.length; i++) {8

 yPos[i] = yPos[i] * (yDim / (yPos.length+1));9

}10

3. Infinite loops

91

Figure 3.9 The xPos of each asterisk

In our teaching, we describe another example of the use of a for-loop to further clarify its use
and to demonstrate the repeated drawing of objects. This example (see Figure 3.10) draws
20 ellipses and each with a distance of 20 pixels.

Figure 3.10 Drawing 20 ellipses on a canvas using a for-loop

In this simple ellipse drawing, the key is the local variable i (see Linr 6 above, which is used
to set the start of the counting of the ellipses: let i = 0;, as well as setting the condition of
how many ellipses should be drawn: i < 20, and counting the ellipses for each iteration: i++).
The global variable x is used to determine the position (in terms of x axis or what could be
described as the distance) of each ellipse and to make sure the program will increment 20
pixels for each iteration: x+=20. In this way we use a for-loop to draw multiple ellipses, instead
of having 20 lines with fixed x and y coordinates.

The “while loop” is another type of loop for executing iterations. The statement is executed
until the condition is true and stops as soon as it is false.

let x = 20;1

2

function setup() {3

 createCanvas(420, 100);4

 background(200);5

 for (let i = 0; i < 20; i++) {6

 ellipse(x, 45, 15, 15);7

 x += 20;8

 }9

}10

Aesthetic Programming

92

For example, while(millis() < wait){} in Line 76 of the work Asterisk Painting tells the
computer to do nothing if the value of millis() 16 is less than the value of the wait variable.
millis() is a time-related syntax and returns the number of milliseconds since the program
started which makes it similar to frameCount(). Once the condition is false (i.e. millis() is no
longer less than wait), the loop will end, and the program can proceed to the next line. This
example is located towards the end of the program when all the asterisks have been drawn,
but the program needs to wait a certain amount of time before resetting (clearing) the
canvas and starting again. This while-loop therefore serves as a pause, freezing the program
from running because there is literally nothing between the opening and closing brackets.

While()

As we have established, loops execute a block of code as long as a specified condition is
true. In this closing section to the chapter it seems appropriate to emphasize that while-
loops and for-loops allow code to be executed repeatedly based on a given condition. The
loop can be thought of as a repeating “if” statement and offers a good way of challenging
conventional structures of linear time, and demonstrating how computers utilize time
differently. Programming challenges many of our preconceptions about time including how it
is organized, how the present is rendered using various time-specific parameters and
conditions, as in the case of a throbber. We hope it is already clear that machine-time
operates at a different register from human-time, further complicated by global network
infrastructures, and notions of real-time computation.

What it means to begin and end a given process becomes a philosophical problem. In “The
Computer as Time-Critical Medium,” 17 Wolfgang Ernst clarifies the ontological importance of
time to the computer to operate and perform tasks. He points to key issues of
programmability, feedback, and recursion at programming-language level in ways that we
hope resonate with the examples we have provided in this chapter. 18 Precise technical detail
is crucially important for the discussion, and his example is how “time counts” differently in the
computer, as for example with the clock signal. Ernst’s concept of “micro-temporality” is
useful as it draws attention to the issue of temporality in programming in ways that many of
the discussions of software overlook, and furthermore how — in a philosophy of time — the
technical or mathematical layer is often dismissed as deterministic. 19

Loops offer alternative imaginaries of time. In his conference paper “… Else Loop Forever,” Ernst
develops this discussion in relation to “untimeliness.” 20 He draws on the infamous “halting
problem” that underpins Turing computation and refers to the problem of whether a computer
program, given all possible inputs, will finish running or continue to run forever. In his 1936/37
essay “On Computable Numbers, with an Application to the Entscheidundsproblem,” it was
Turing’s assertion that a general algorithm to solve the halting problem was not possible
which led to the mathematical definition of a Turing machine. 21 This “problem of decision,” or
“ending” as Ernst puts it, underscores broader notions of algorithmic time and the way the
computer forever anticipates its own “never-ending” in an endless loop. Perhaps the throbber
icon is a good metaphor for this, in terms of the impossibility of predicting the quality of
transmission conditions, and, in this way, the animated graphics depict a sense of uncertainty
that underlies deep processual micro-temporality. 22

3. Infinite loops

93

Contrary to any traditional narrative — with its beginning, middle and end – Ernst points out
that a computational recording can be re-enacted endlessly: “with no internal sense of
ending,” as a “time-critical condition.” 23 That there can be “no happy ending” allows Ernst
to elaborate on new temporal structures that are no longer aligned to traditional narrative
structures or the terminal logic of the “end of history.” 24 Our first example of the throbber
alludes to this blurring of the beginning and the end. Temporal complexity is further
developed by referring back to Turing’s speculation on artificial intelligence, whether a finite-
state machine can be aware of its “conscious” state at a given time and whether a sense of
ending is necessary in order to be functional. It is clear that finite-state machines are
procedural, in the sense that they operate linear sequences of discrete events in time like
clockwork, but as Ernst reminds us: “There is no automatic procedure which can decide for
any program, if it contains an endless loop or not.” 25

Referencing Martin Heidegger’s “being-in-time,” 26 and human beings’ knowledge of the end
of their lives which inscribes a temporal sense of what it means to be a human, Ernst says:
“Humans live with the implicit awareness that their death is already future in the past.” 27
This looped deferral of ending is ontologically exacerbated with computation, unfolding the
ending of being as a time-critical condition for both humans and machines alike. Leaving aside
a deeper discussion of Heidegger’s philosophy, the importance of this for the discussion of
loops seems to mirror the complexity of lived time. Programming manages to provide insight
here, and creative opportunities as is the case with live coding during which programmers
interact with a running system that is not stopped while waiting for new program
statements. 28 We can even begin to speculate on how software is not only synchronized
with lived time, but actually produces it, and we hope the two examples in the chapter help us
to think through the intersection of endlessness, loops, conditions, and temporalities in both
conceptual and technical ways. We might go as far as to say that programming allows for a
time-critical understanding of how technologies play a crucial role in our experience of time,
not only how we model it, but how we can forge new beginnings and endings.

MiniX: Designing a throbber

Objective:

– To reflect upon temporality in digital culture by designing a throbber icon.
– To experiment with various computational syntaxes and the effects of animation,

and transformation.

For additional inspiration:

Check out other works that refer to the throbber and how other people contextualize
their thinking.

– Tanabata(七夕) by Yurika Sayo (n.d.), with source code,
https://www.openprocessing.org/sketch/926326.

https://www.openprocessing.org/sketch/926326

Aesthetic Programming

94

– LOADING (THE BEAST 6:66/20:09) by Gordan Savičić (2009),
https://www.yugo.at/processing/archive/index.php?what=loading.

– The Best is Yet to Come by Silvio Lorusso (2012), preloaders follow one another
randomly and endlessly, https://silviolorusso.com/work/the-best-is-yet-to-
come/.

– DVD guy by Constant Dullaart (2009), https://www.youtube.com/playlist?
list=PLCUGKK4FUkbMdnNii8qoRy9_tMvqE8XHB, with the contextualization by
Panke Gallery in Berlin, http://www.upstreamgallery.nl/news/545/constant-
dullaart-solo-show-nein-gag-at-panke-gallery-berlin.

– Throb by Winnie Soon (2018-19), http://siusoon.net/throb/.

Task (RunMe):

Use loops and any one of the transformational functions to redesign and program an
“animated” throbber.

Questions to think about (ReadMe):

Describe your throbber design, both conceptually and technically.

– What do you want to explore and/or express?
– What are the time-related syntaxes/functions that you have used in your

program, and why have you used them in this way? How is time being
constructed in computation (refer to both the reading materials and
your coding)?

– Think about a throbber that you have encounted in digital culture, e.g. for
streaming video on YouTube or loading the latest feeds on Facebook, or waiting
for a payment transaction, and consider what a throbber communicates, and/or
hides? How might we characterize this icon differently?

Required reading

– Hans Lammerant, “How humans and machines negotiate experience of time,” in The
Techno-Galactic Guide to Software Observation , 88-98, (2018),
https://www.books.constantvzw.org/nl/home/tgso.

– Daniel Shiffman, Courses 3.1, 3.2, 3.3, 3.4, 4.1, 4.2, 5.1, 5.2, 5.3, 7.1, 7.2, Code! Programming
with p5.js , https://www.youtube.com/watch?v=1Osb_iGDdjk (2018). (Includes practical
usage on conditional statements, loops, functions, and arrays.)

– Wolfgang Ernst, “‘… Else Loop Forever’: The Untimeliness of Media,”
(2009), https://www.medienwissenschaft.hu-
berlin.de/de/medienwissenschaft/medientheorien/downloads/publikationen/ernst-else-
loop-forever.pdf.

https://www.yugo.at/processing/archive/index.php?what=loading
https://silviolorusso.com/work/the-best-is-yet-to-come/
https://www.youtube.com/playlist?list=PLCUGKK4FUkbMdnNii8qoRy9_tMvqE8XHB
http://www.upstreamgallery.nl/news/545/constant-dullaart-solo-show-nein-gag-at-panke-gallery-berlin
http://siusoon.net/throb/
https://www.books.constantvzw.org/nl/home/tgso
https://www.youtube.com/watch?v=1Osb_iGDdjk

3. Infinite loops

95

Further reading

– Wolfgang Ernst, Chronopoetics: The Temporal Being and
Operativity of Technological Media (London: Rowman &
Littlefield International, 2016), 63-95.

– Winnie Soon, “Throbber: Executing Micro-temporal Streams,”
Computational Culture 7, October 21
(2019), http://computationalculture.net/throbber-executing-
micro-temporal-streams/.

– Wilfried Hou Je Bek, “Loop,” in Fuller, ed., Software Studies .

– Derek Robinson, “Function,” in Fuller, ed., Software Studies .

Aesthetic Programming

96

Notes

1. The logic behind loops can be
demonstrated by the following
paradoxical word play: “The next
sentence is true. The previous is false.”
Further examples of paradox, recursion,
and strange loops can be found in
Douglas R. Hofstadter’s‘ Gödel, Escher,
Bach: An Eternal Golden Braid (New
York: Basic Books, 1999).

2. For an account of “Note G,” see Joasia
Krysa’s Ada Lovelace 100 Notes-100
Thoughts Documenta 13 (Berlin: Hatje
Cantz Verlag, 2011).

3. Eugene Eric Kim and Betty Alexandra
Toole, “Ada and the First Computer,”
Scientific American 280, no. 5 (1999),
78.

4. It is also interesting to note that the term
“throbber” is a derogatory term derived
from erect penis, not unlike git which was
described in the opening chapter.

5. There is much we could add here also
about screensavers as cultural form in the
broader context of productive labor-time,
and the attention economy. Alexandra
Anikina’s PhD Procedural Films
(Goldsmiths, University of London, 2020)
contains a chapter on the aesthetic form
of screensavers in relation to the
discussion of idle time/sleep, and
cognitive labor; her lecture-performance
Chronic Film from 2017 can be seen at
http://en.mieff.com/2017/alexandra_a
nikina. See also Rafaël Rozendaal’s
installation Sleep Mode: The Art of the
Screensaver at Het Nieuwe Instituut
(2017), https://hetnieuweinstituut.nl/e
n/press-releases/sleep-mode-art-screen
saver.

6. Winnie Soon, “Throbber: Executing Micro-
temporal Streams,” Computational
Culture 7 (October 21, 2019), http://co
mputationalculture.net/throbber-executi
ng-micro-temporal-streams/.

7. Artist Golan Levin has given an online
tutorial on modulo operator as part of The
Coding Train series, see: https://www.yo
utube.com/watch?v=r5Iy3v1co0A.

8. Derek Robinson, “Function,” in Matthew
Fuller, ed. Software Studies , 101.

9. To stick with the provided examples, we
only offer two syntaxes related to
transformation. Beyond translate() and
rotate(), there are also other transform-
related functions such as scale(),
shearX(), shearY(). See https://p5js.org/
reference/#group-Transform.

10. https://p5js.org/reference/#/p5/fram
eCount.

11. https://p5js.org/reference/#/p5/push.
12. http://www.johnpbell.com/asterisk-pain

ting/.>.
13. Hans Lammerant, “How humans and

machines negotiate experience of time,”
in The Techno-Galactic Guide to
Software Observation (Brussels:
Constant, 2018), 88-98.

14. https://developer.mozilla.org/en-US/d
ocs/Web/JavaScript/Reference/Global
_Objects/Array/push

15. https://developer.mozilla.org/en-US/d
ocs/Web/JavaScript/Reference/Global
_Objects/Array/splice

16. millis() is a p5.js syntax, returning the
number of milliseconds since starting the
program, similar to frameCount but
counted in milliseconds, see https://p5j
s.org/reference/#/p5/millis.

17. Wolfgang Ernst, Chronopoetics: The
Temporal Being and Operativity of
Technological Media (London: Rowman
& Littlefield International, 2016), 63-95.

18. Ernst, Chronopoetics, 63.
19. For example, the philosopher Henri

Bergson makes a qualitative distinction
between lived “durational” time, and
vulgar, or clock time, which flattens and
deadens the experience of time. See Henri
Bergson, Matter and Memory [1896]
(New York: Zone Books, 1990).

20. Wolfgang Ernst, “‘… Else Loop Forever’. The
Untimeliness of Media” (2009). Available
at https://www.medienwissenschaft.hu-
berlin.de/de/medienwissenschaft/medi
entheorien/downloads/publikationen/er
nst-else-loop-forever.pdf.

21. Alan M. Turing, “On Computable Numbers,
with an Application to the Entscheidungs
problem,” Proceedings of the London
Mathematical Society 42 (1936/1937):
230–265.

22. Soon, “Throbber.”
23. Ernst, “‘… Else Loop Forever’.”
24. “The end of history” is a reference to

Francis Fukuyama’s The End of History
and the Last Man (New York: Free
Press, 1992), which proposes the
ascendancy of Western liberal democracy
after the dissolution of the Soviet Union,
post-1989.

25. Ernst, “‘… Else Loop Forever’.”
26. Martin Heidegger, Being in Time

(1927). For a useful summary, see http
s://plato.stanford.edu/entries/heideg
ger/#BeiTim.

27. Ernst, “‘… Else Loop Forever’.”
28. See forthcoming Alan Blackwell, Emma

Cocker, Geoff Cox, Thor Magnussen, Alex
McLean, Live Coding: A User’s
Manual (publisher and date unknown).

http://en.mieff.com/2017/alexandra_anikina
https://hetnieuweinstituut.nl/en/press-releases/sleep-mode-art-screensaver
http://computationalculture.net/throbber-executing-micro-temporal-streams/
https://www.youtube.com/watch?v=r5Iy3v1co0A
https://p5js.org/reference/#group-Transform
https://p5js.org/reference/#/p5/frameCount
https://p5js.org/reference/#/p5/push
http://www.johnpbell.com/asterisk-painting/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice
https://p5js.org/reference/#/p5/millis
https://www.medienwissenschaft.hu-berlin.de/de/medienwissenschaft/medientheorien/downloads/publikationen/ernst-else-loop-forever.pdf
https://plato.stanford.edu/entries/heidegger/#BeiTim

4. Data capture

97

4. Data capture

4. Data capture

setup()

MiniX:
Capture ALL

Required reading

start()

While()

Exercise in class:
Decode

Source code

DOM elements:
creating and styling a button

Mouse capture Keyboard capture

Audio capture Video/Face capture

Exercise in class

The concept of capture

Web analytics and heatmap Form elements

Metrics of likes Voice and audio data Health tracker

Notes

Further reading

99

100

101

101

103

104

105

106

107

110

111

111
112
113
114
115

115

117

118

118

119

Contents

– setup()

– start()

– Exercise in class (Decode)

– Source code

– DOM elements: creating and styling a button

– Mouse capture

– Keyboard capture

– Audio capture

– Video/Face capture

– Exercise in class

– The concept of capture

– Web analytics and heatmap
– Form elements
– Metrics of likes
– Voice and audio data
– Health tracker

– While()

– MiniX: Capture All

– Required reading

– Further reading

– Notes

4. Data capture

99

setup()

This chapter focuses on how a program captures and processes input data. We have already
introduced interactivity with physical devices with the functions mouseX and mouseY (see
Chapter 2, “Variable geometry”), as well as the idea of listening events via the functions
mouseIsPressed() and windowResized() (see Chapter 3, “Infinite loops”). In this chapter we
expand on these ideas and present different types of data capture, including mouse
movement, keyboard press, audio volume, and video/face tracking with a web camera.

Framing this chapter under “Data capture” allows us to move from immediate interactions to
questioning which kinds of data is being captured and how it is being processed, 1 as well as
the consequences of this broader cultural tendency that is often called “datafication.” 2 This
term — a contraction of data and commodification — refers to the ways in which all aspects of
our life seem to be turned into data which is subsequently transferred into information which
is then monetized (as described by Kenneth Cukier and Victor Mayer-Schöenberger in their
article “The Rise of Big Data”). 3 Our data, “the patterns of human behaviors,” is extracted
and circulated within the logic of what Shoshana Zuboff calls “surveillance capitalism,” 4
demonstrating the need for large quantities of all manner of data to be harvested for
computational purposes, such as predictive analytics (e.g. you like this book so we think you
might like these books too).

We will return to some of these issues in Chapter 10, “Machine unlearning,” but suffice to say,
for now, that in the era of big data, there appears to be a need to capture data on
everything, even from the most mundane actions like button pressing. This chapter begins
with a relatively simple action like switching a device on or off — light, a kitchen appliance, and
so on. Moreover a button is “seductive,” 5 with its immediate feedback and instantaneous
gratification. It compels you to press it. Similarly in software and online platforms like
Facebook, a button calls for interaction, inviting the user to click, and interact with it in binary
states: like or not-like, accept or cancel. The functionality is simple — on or off — and gives the
impression of meaningful interaction despite the very limited choices on an offer (like most
interactive systems). Indeed this binary option might be considered to be more
“interpassive” than interactive, like accepting the terms of conditions of a social media
platform like Facebook without bothering to read the details, or “liking” something as a way
of registering your engagement however superficial or fleeting. Permission for capture data is
provided, and as such our friendships, thoughts, and experiences all become “datafied.”
Even our emotional states are monitored when it comes to the use of emoticons (discussed
in Chapter 2, “Variable geometry”).

With these ideas in mind, the next section will introduce the sample code for a customizable
“Like” button in order to demonstrate the potential of simple interactions such as pressing a
button. How the specificities and affordances of buttons can be considered, as well as how
the like button becomes a “social button,” thus creating economic values in what Carolin
Gerlitz and Anne Helmond call “the like economy.” 6 As in previous chapters we will work
through the various types of capture using buttons as a starting point. Subsequently, we will
reflect on the wider implications.

Aesthetic Programming

100

start()

Figure 4.1: The web interface and interaction of the sample code

RunMe, https://aesthetic-
programming.gitlab.io/book/p5_SampleCode/ch4_DataCapture/

Starting with this sample code, the sketch incorporates four data inputs for a customizable
“like” button:

1. The button can be clicked using the mouse and then the button’s color is changed.

2. The button’s color is resumed when the mouse is moved away from the button area.

3. The button will rotate 180 degrees when you click the keyboard’s spacebar.

4. The button will change its size according to the volume of the audio/mic input.

5. The button will move in line with input from the facial recognition software, following the
movement of what it considers to be the mouth.

The button has been customized using Cascading Style Sheets (CSS), which describe the
style and visual elements of an object in a format that consists of a selector and a
declaration block. 7 These identify which elements you want to customize and how to do it
precisely. CSS works with HTML and we can create HTML’s DOM objects like a button with the
p5.js library (which will be explained in further detail in the following section).

https://aesthetic-programming.gitlab.io/book/p5_SampleCode/ch4_DataCapture/

4. Data capture

101

Exercise in class (Decode)

By looking at the like button closely in the RunMe, can you come up with a list of
stylistic customizations that have been introduced in the sample code?

Then look at the source code in the next section (Lines 23-49) and describe some of
the button’s styling in your own words.

Source code

let button;1

let mic;2

let ctracker;3

let capture;4

5

function setup() {6

 createCanvas(640, 480);7

 //web cam capture8

 capture = createCapture(VIDEO);9

 capture.size(640, 480);10

 capture.hide();11

12

 // Audio capture13

 mic = new p5.AudioIn();14

 mic.start();15

16

 //setup face tracker17

 ctracker = new clm.tracker();18

 ctracker.init(pModel);19

 ctracker.start(capture.elt);20

21

 //styling the like button with CSS22

 button = createButton('like');23

 button.style("display", "inline-block");24

 button.style("color", "#fff");25

 button.style("padding", "5px 8px");26

 button.style("text-decoration", "none");27

 button.style("font-size", "0.9em");28

 button.style("font-weight", "normal");29

 button.style("border-radius", "3px");30

Aesthetic Programming

102

 button.style("border", "none");31

 button.style("text-shadow", "0 -1px 0 rgba(0, 0, 0, .2)");32

 button.style("background", "#4c69ba");33

 button.style(34

 "background","-moz-linear-gradient(top, #4c69ba 0%, #3b55a0 100%)");35

 button.style(36

 "background","-webkit-gradient(linear, left top, left bottom, \37

 color-stop(0%, #3b55a0))");38

 button.style(39

 "background","-webkit-linear-gradient(top, #4c69ba 0%, #3b55a0 100%)");40

 button.style(41

 "background","-o-linear-gradient(top, #4c69ba 0%, #3b55a0 100%)");42

 button.style(43

 "background","-ms-linear-gradient(top, #4c69ba 0%, #3b55a0 100%)");44

 button.style(45

 "background","linear-gradient(to bottom, #4c69ba 0%, #3b55a0 100%)");46

 button.style(47

 "filter","progid:DXImageTransform.Microsoft.gradient \48

 (startColorstr='#4c69ba', endColorstr='#3b55a0', GradientType=0)");49

 //mouse capture50

 button.mouseOut(revertStyle);51

 button.mousePressed(change);52

}53

function draw() {54

 //getting the audio data i.e the overall volume (between 0 and 1.0)55

 let vol = mic.getLevel();56

 /*map the mic vol to the size of button,57

 check map function: https://p5js.org/reference/#/p5/map */58

 button.size(floor(map(vol, 0, 1, 40, 450)));59

60

 //draw the captured video on a screen with the image filter61

 image(capture, 0,0, 640, 480);62

 filter(INVERT);63

64

 let positions = ctracker.getCurrentPosition();65

 //check the availability of web cam tracking66

 if (positions.length) {67

 //point 60 is the mouth area68

 button.position(positions[60][0]-20, positions[60][1]);69

 /*loop through all major points of a face70

 (see: https://www.auduno.com/clmtrackr/docs/reference.html)*/71

 for (let i = 0; i < positions.length; i++) {72

 noStroke();73

 //color with alpha value74

 fill(map(positions[i][0], 0, width, 100, 255), 0, 0, 120);75

 //draw ellipse at each position point76

 ellipse(positions[i][0], positions[i][1], 5, 5);77

4. Data capture

103

DOM elements: creating and styling

a button

“DOM” stands for Document Object Model, a document like HTML with a tree structure that
allows programs to dynamically access and update content, structure, and style. Rather than
focusing on the various tree structures, we will focus on elements from forms that are part of
the DOM. These form elements include buttons, radio buttons, checkboxes, text input, etc.,
and these are usually encountered when filling in forms online. The basic structure for
creating form elements is relatively simple. The p5.js reference guide, under the DOM, 8 lists
various examples of form creation syntax, e.g. createCheckbox(), createSlider(),
createRadio(), createSelect(), createFileInput(), and so on. The one that we need to create a
button is called createButton().

First you need to assign an object name to the button, and if you use multiple buttons, you
will need to come up with multiple different names so you can set the properties 9 for
each one.

– let button;: First step is to declare the object by assigning a name.
– button = createButton('like');: Create a button and consider the text is to be displayed.
– button.style("xxx","xxxx");: This is the CSS standard, where the first parameter is a

selection/selector and the second is a declaration block/attributes. For example, if you
want to set the font color, then you can put in “color” and “#fff” respectively. 10 For this
sample code, all the styling was copied directly from the 2015 Facebook interface by

 }78

 }79

}80

81

function change() {82

 button.style("background", "#2d3f74");83

 userStartAudio();84

}85

function revertStyle(){86

 button.style("background", "#4c69ba");87

}88

//keyboard capture89

function keyPressed() {90

 //spacebar - check here: http://keycode.info/91

 if (keyCode === 32) {92

 button.style("transform", "rotate(180deg)");93

 } else { //for other keycode94

 button.style("transform", "rotate(0deg)");95

 }96

}97

Aesthetic Programming

104

looking at their CSS source code. Styling includes display, color, padding, text-decoration,
font-size, font-weight, border-radius, border, text-shadow, background and filter, with the
addition of transform.

– button.size();: This sets the button’s width and height.
– button.position();: This sets the button’s position.
– button.mousePressed(change);: This changes the button’s color, and gives users control

over starting audio with the customized function change() when the mouse is pressed
(more to follow in the section of “Audio capture”).

– button.mouseOut(revertStyle);: This reverts the original button’s color with the cutomized
function revertStyle() when the mouse moves off the button element.

Mouse capture

In the previous chapter, the program listened for mouse movement and captured the
corresponding x and y coordinates using the built-in syntaxes mouseX and mouseY. This sample
code incorporates specific mouse listening events, such as mouseOut() and mousePressed()
functions which are called every time the user presses a mouse button. See the excerpt from
the code below:

The functions mousePressed() and mouseOut() are linked to the button you want to trigger
actions. There are other mouse-related mouseEvents, 11 such as mouseClicked(),
mouseReleased(), doubleClicked(), mouseMoved(), and so on.

//mouse capture1

button.mouseOut(revertStyle);2

button.mousePressed(change);3

4

function change() {5

 button.style("background", "#2d3f74");6

 userStartAudio();7

}8

function revertStyle(){9

 button.style("background", "#4c69ba");10

}11

4. Data capture

105

Keyboard capture

The use of the keyPressed() function is for listening any keyboard pressing events. If you want
to specify any keyCode (that is the actual key on the keyboard), the sample code shows how
a conditional statement can be implemented within the keyPressed() function.

The “conditional structure” is something similar to what you have learnt in the previous
chapter, but it is also something different with the “if-else” statement. It explains as: if the
spacebar on the keyboard is pressed, then the button rotates 180 degrees, and if any other
keys of the keyboard are pressed, then the button reverts back to the original state of 0
degrees. The “if-else” structure therefore allows you to setup a further condition with the
listening event: if a keyCode is detected other than the spacebar, the program will do
something else.

keyCode takes in numbers or special keys like BACKSPACE, DELETE, ENTER, RETURN, TAB,
ESCAPE, SHIFT, CONTROL, OPTION, ALT, UP_ARROW, DOWN_ARROW, LEFT_ARROW,
RIGHT_ARROW. In the above example, the keyCode for a spacebar is 32 (see Line 3).

There is no difference in keyCode between capital and lower case letters, i.e. “A” and “a” are
both 65.

Similar to mouseEvents, there are also many other keyboardEvents, 12 such as keyReleased(),
keyTyped(), keyIsDown().

function keyPressed() {1

 //spacebar - check here: http://keycode.info/2

 if (keyCode === 32) {3

 button.style("transform", "rotate(180deg)");4

 } else { //for other keycode5

 button.style("transform", "rotate(0deg)");6

 }7

}8

Aesthetic Programming

106

Audio capture

The basic web audio p5.sound library is used in the sample code. It includes features like
audio input, sound file playback, audio analysis, and synthesis. 13

The library should be included in the HTML file (as demonstrated in Chapter 1, “Getting
started”) so we can use the corresponding functions such as p5.AudioIn() and getLevel().

Like a button, you first declare the object, e.g. let mic; (see Line 1,) and then set up the input
source (usualy a computer microphone) and start to listen to the audio input (see Lines 6-7
within setup()). When the entire sample code is executed, a popup screen from the browser
will ask for permission to access the audio source. This audio capture only works if access
is granted.

let mic;1

2

function setup() {3

 button.mousePressed(change);4

 // Audio capture5

 mic = new p5.AudioIn();6

 mic.start();7

}8

9

function draw() {10

 //getting the audio data i.e the overall volume (between 0 and 1.0)11

 let vol = mic.getLevel();12

 /*map the mic vol to the size of button,13

 check map function: https://p5js.org/reference/#/p5/map */14

 button.size(floor(map(vol, 0, 1, 40, 450)));15

}16

17

function change() {18

 userStartAudio();19

}20

4. Data capture

107

Figure 4.2: Permission for audio access Figure 4.3: Permission for camera access

The sample code refers to methods under p5.AudioIn() in the p5.sound library, which reads
the amplitude (volume level) of the input source returning values between 0.0 to 1.0 using
the getLevel() method.

A new function map() (in Line 15) will be introduced to map a number across a range. Since
the values for volume returned are on a range of 0.0 to 1.0, the corresponding value will not
make a significant difference in terms of the size of the button. As such, the range of the
audio input will then map to the size range of the button dynamically.

The function userStartAudio() (see Line 19) will enable the program to capture the mic input
on a user interaction event, and in this case it is the mousePressed() event. This is a practice
enforced by many web browsers, including Chrome, in which users aware of the audio events
happen in the background and to avoid auto play or auto capture features from a
web browser.

Video/Face capture

let ctracker;1

let capture;2

3

function setup() {4

 createCanvas(640, 480);5

 //web cam capture6

 capture = createCapture(VIDEO);7

 capture.size(640, 480);8

 capture.hide();9

 //setup face tracker10

 ctracker = new clm.tracker();11

 ctracker.init(pModel);12

Aesthetic Programming

108

For the specific video/face capture, the sample code uses clmtrackr which is a JavaScript
library developed by data scientist Audun M. Øygard in 2014 for aligning a facial model with
faces in images or video. 14 Based on facial algorithms designed by Jason Saragih and
Simon Lucey, 15 the library analyses a face in real-time marking it into 71 points based on a
pre-trained machine vision model of facial images for classification. (See Figure 4.5) Since it is
a JavaScript library, you need to put the library in the working directory, and link the library,
and the face model in the HTML file. (see Figure 4.4)

Figure 4.4: The HTML file structure to import the new library and models

 ctracker.start(capture.elt);13

}14

15

function draw() {16

 //draw the captured video on a screen with the image filter17

 image(capture, 0,0, 640, 480);18

 filter(INVERT);19

20

 let positions = ctracker.getCurrentPosition();21

22

 //check the availability of web cam tracking23

 if (positions.length) {24

 //point 60 is the mouth area25

 button.position(positions[60][0]-20, positions[60][1]);26

27

 /*loop through all major points of a face28

 (see: https://www.auduno.com/clmtrackr/docs/reference.html)*/29

 for (let i = 0; i < positions.length; i++) {30

 noStroke();31

 //color with alpha value32

 fill(map(positions[i][0], 0, width, 100, 255), 0, 0, 120);33

 //draw ellipse at each position point34

 ellipse(positions[i][0], positions[i][1], 5, 5);35

 }36

 }37

}38

4. Data capture

109

Figure 4.5: The tracker points on a face. Courtesy of the clmtrackr’s
creator, Audun M. Øygard

The program uses the webcam via video capture to do facial recognition and details
as follow:

1. let ctracker; & let capture;: Initialize the two variables that are used for face tracking
and video capture.

2. createCapture(VIDEO) in Line 7: This is a HTML5 <video> element (part of the DOM) that
captures the feed from a webcam. In relation to this function you can define the size of
the screen capture (which depends on the resolution of the webcam) and position on
screen, e.g. capture.size(640, 480); We also uses capture.hide(); to hide the video feed
so that the button and the colored tracker points will not crash the video object.

3. Lines 11-13 are related to ctracker: ctracker = new clm.tracker(), ctracker.init(pModel);
and ctracker.start(capture.elt);: Similar to audio and camera use, you first need to
initialize the ctracker library, select the classified model (to be discussed in Chapter 10,
“Machine unlearning”), and start tracking from the video source.

4. In order to display the captured video in the INVERT mode, the program uses
image(capture, 0,0, 640, 480); to draw the video feed in an image format, and apply the
filter accordingly: filter(INVERT); (See Line 18-19)

Aesthetic Programming

110

5. ctracker.getPosition() in Line 21: While we get the tracker points into an array position, a
for-loop (in line 30-36) is used to loop through all 71 tracker points (as it starts with 0
and ends with 70) and return the position in terms of x and y coordinates as a two-
dimensional array in the form of position[][]. The first dimension ([]) of the position
array indicates the tracker points from 0 to 70. The second dimension ([][]) retrieves
the x and y coordinates of the tracker points.

6. Getting all the data on the tracker points allows ellipses to be drawn to cover the face.
Since the position of the like button follows that of the mouth, which postions at the
point 60 (but since the button requires to position at the mid point of the mouth,
therefore it needs to move the button to the left for around 20 pixels), the program will
then return the position as an array (see line 26): positions[60][0]-20 and positions[60]
[1]. The second array’s dimensions of [0] and [1] refer to the x and y coordinates.

Exercise in class

To familiar yourself with the various modes of capture, try the following:

1. Explore the various capture modes by tinkering with various parameters such as
keyCode, as well as other keyboard, and mouse events.

2. Study the tracker points and try to change the position of the like button.

3. Try to test the boundaries of facial recognition (using lighting, facial expressions,
and the facial composition). To what extend can a face be recognized as such, and
to what extent is this impossible?

4. Do you know how the face is being modeled? How has facial recognition technology
been applied in society at large, and what are some of the issues that arise
from this?

It would be worth checking back to Chapter 2, “Variable geometry,” for a reminder of
how facial recognition identifies a person’s face from its geometry — such as the
distance between a person’s eyes or size of their mouth — to establish a facial
signature that can be compared to a standardized database. One of the main
problems is that these databases are skewed by how data was prepared, its selection,
collection, categorization, classification, and cleaning (further discussed in Chapter 10,
“Machine unlearning”). To what extent does your face meet the standard?

4. Data capture

111

The concept of capture

This next section discusses various examples of different inputs for data capture. The
intention is to showcase some other possibilities of its application, and more importantly how
this relates to datafication, commodification, surveillance and personalization. In other words,
this is an opportunity to discuss data politics more broadly: to question how our personal
data is captured, quantified, archived, and used, and for what purpose? What are the
implications, and who has the right to access the captured data, and derive profit from it?
Few people know exactly which data is captured or how it is used? 16 However, despite the
use of the term “capture,” we should also point out that this is not total incarceration, and
there are escape routes. More on this later.

Web analytics and heatmap

At the moment, the most widely used web analytics service is provided by Google and
contains tremendous amounts of data on website traffic and browsing behavior, including the
number of unique visits, average time spent on sites, browser and operating system
information, traffic sources and users’ geographic locations, and so on. This data can then be
further utilized to analyze customers’ profiles and user behaviors.

Figure 4.6: Google Analytics screenshot

Heatmap is one of the visualization tools and provides a graphical representation of data to
visualize user behavior. It is commonly used in industries for the purpose of data analytics.
For example, it is easy to track the cursor’s position and compute the duration of its stay in
different areas of a web page, providing an indication as to which content is “hotter” than the

Aesthetic Programming

112

rest. This is useful for marketing purposes, not least to understand which content is more or
less attractive to users, and for companies or political parties to analyze where to best place
their ads and other propaganda. The Facebook–Cambridge Analytica data scandal makes a
pertinent case study. In early 2018, it was revealed that the personal data of millions of
peoples’ Facebook profiles had been harvested without their consent, and used for political
advertising purposes. 17 Major corporations such as Facebook, 18 constantly explore new
data capture methods to optimize screen presentation.

Figure 4.7: An example of a heatmap for analyzing a web page

Form elements

As we argued with regard to interaction, the choices are limited, and yet each form element
like a dropdown menu or a button indicates different affordances. 19 Researcher Rena
Bivens has made a thorough analysis of Facebook’s registration page in relation to the
gender options available. 20 When Facebook was first launched in 2004 there was no gender
field, but things changed in 2008 when a drop-down list was introduced that consisted solely
of the options Male or Female, further changed with the use of radio buttons to emphasize
the binary choice. A breakthrough occurred in 2014 when Facebook allowed users to
customize the gender field and you can now select from a list of more than 50 gender
options. According to Facebook, they wanted to enhance “personalized experiences” with
“authentic identity,” 21 however it remains arguable that this personalization (both at
Facebook and in society in general) is well-intended as it also serves the purpose of market
segmentation (in dividing users into ever more sub-groups).

Figure 4.8: Facebook’s custom gender field as of February 2020

4. Data capture

113

Metrics of likes

The use of a single Like button provides a good example of how our feelings are captured.
The aptly named company “Happy or Not” who produce push button technology and
analytics software — the kind found in supermarkets for instance, with happy or sad faces —
also provide feedback technologies for the workplace, as indicated by their strapline:
“Creating happiness in every business, worldwide.” 22 The six emoticons Facebook launched
in 2016, including “Like,” “Love,” “Haha,” “Wow,” “Sad” and “Angry,” mark our standardized
experience of work and play more precisely. All clicks are “categorized” into emotional
metrics, displayed publicly on the web, and used for algorithmic calculation to prioritize feeds
to users. It is fairly clear how the clicks serve the interests of platform owners foremost, and,
as if to prove the point, Facebook, and Instagram have tested the idea of hiding the metrics
on posts in order to shift attention to what they prefer to call “connecting people” 23 — as if
to prove their interests to be altruistic.

This practice of quantification is something the artist Benjamin Grosser has parodied in his
Demetricator series, 24 first published in 2012, which makes all the numbers associated with
the metadata disappear. The associated “value” of numbers associated with notifications,
replies, favorites, and feeds, have all been nullified. Or rather, it becomes clear that the
clicking produces value and the proof of this is conspicuous by its absence.

Figure 4.9: Benjamin Grosser’s Facebook Demetricator, demetricating
Likes, Shares, Comments, and Timestamps. Original (top), Demetricated

(bottom). Courtesy of the artist

Tracking is clearly big business and comes with its own invisibility cloak. In 2013, Facebook
conducted a research project about last-minute self-censorship, 25 revealing their capability
of being able to track even unposted status updates/posts/comments, including erased
texts, or images. This “residual data,” which might be considered “waste material,” “digital
exhaust,” or data exhaust,” and yet this data is rich in predictive values. 26 The implication
is that Facebook is not only interested in capturing what you have posted, but also capturing
your thought processes from residual data. It is sobering to think that data capture extends
to the realm of imagination.

Aesthetic Programming

114

Voice and audio data

Smart devices like our computers, phones, and other gadgets are commonly equipped with
voice recognition — such as Siri, Google Assistant or Alexa — which turns audio input into
commands for software, and feedback with more personalized experiences to assist in the
execution of everyday tasks. You can find these voice assistants in just about everything now
including, everyday objects like microwaves, and they become more and more
conversational and “smart,” one might say “intelligent,” as machine learning develops. These
“voice assistants,” as they are known, carry out simple tasks very well, and become smarter,
and at the same time capture voices for machine learning applications in general. Placing
these tangible voice assistants in our homes allows the capturing of your choices and tastes
when not facing a screen. In the internet of things, the device serves you, and you serve the
device. Indeed we become “devices” that generate value for others. 27

Figure 4.10: Screenshot of Voice & Audio activity

In the Figure 4.10, the text reads as:

“Voice and audio recordings save a recording of your voice and other audio inputs in
your Web & app activity on Google services and from sites, apps and devices that
use or connect to Google speech services. […] This data helps Google give you more
personalised experiences across Google services, like improved speech recognitionn
when you say “Hey Google” to speak to your Assistant, both on and off Google. This
data may be saved and used in any Google service where you are signed in to give
you more personalised experiences.”

4. Data capture

115

Figure 4.11: Screenshot of sleep tracker

Health tracker

Fitness and well-being becomes datafied too, and
with the setting of personal targets, also “gamified.”
As the welfare state is dismantled, personal well-
being becomes more and more individualized and
there is a growing trend for “self-tracking” apps to
provide a spurious sense of autonomy. Movement,
steps, heart rate, and even sleep patterns can be
tracked and analyzed using wearable devices such
as the Fitbit, or the Apple Watch. These practices of
the “quantified self,” sometimes referred to as “body
hacking” or “self-surveillance,” overlap with other
trends that incorporate capture and acquisition into
all aspects of daily life.

While()

Under late capitalism, temporality itself seems to
have been captured, and “there is a relentless
incursion of the non-time of 24/7 into every aspect of
social or personal life. There are, for example, almost
no circumstances now that cannot be recorded or
archived as digital imagery or information.” 28 We
quote from Jonathan Crary’s book 24/7: Late
Capitalism and the Ends of Sleep which describes

the collapse of the distinction between day and night, meaning we are destined to produce
data at all times. If sleep was once thought to be the last refuge from capitalism where no
value could be extracted, 29 then this no longer seems to be the case.

That even sleep has become datafied seems to point to the extent to which our
subjectivities have also been captured. We produce, share, collect, use and misuse,
knowingly, or not, massive amounts of data, but what does its capture do to us? What are
the inter-subjective relations between data-commodity and its human subjects? As
discussed in this chapter, our personal and professional lives seem to be fully enmeshed in
various processes of “datafication,” but does this mean that we are trapped in a prison-house
of data, unwittingly producing value for others? In this last section we try to unpack these
ideas a little more, and in particular the idea of value in the context of the data flow (that we
call big data), and examine our position within these datafied structures which is not entirely
without agency.

In 2015, transmediale, an annual art and digital culture festival in Berlin, posted an open call
addressing the pervasive logic of Capture All and the quantification of life, work and play.
The call included some questions worth repeating here: “Are there still modes of being that
resist the imperative of digital capitalism to CAPTURE ALL or is there no option but to play

Aesthetic Programming

116

along? If so, are there artistic strategies and speculative approaches that do not play this
game of quantification by the numbers? What are the […] gaps of relentless quantification
and gamification that can be exploited in order to carve out new ways of living?” 30
Hopefully the practical tasks and examples of this chapter go some way to pointing out
some alternatives.

Marxist theory can help us make sense of this on a more conceptual level. The various
techniques we have described can be understood as means of production, what Marx would
refer to as “fixed capital,” which is then turned into “exchange value,” or in other words
monetary value. Yet to see this process as one in which the labor-value of users is simply
captured and the associated value stolen misses the point, as Tiziana Terranova states. 31
Rather than individual users needing compensation for their willing supply of data, it is the
bigger social aspect that is more significant, particularly in the context of big data, we might
add. She explains: “Contrary to some variants of Marxism which tend to identify technology
completely with “dead labor,” “fixed capital” or “instrumental rationality,” and hence with
control and capture, it seems important to remember how, for Marx, the evolution of
machinery also indexes a level of development of productive powers that are unleashed but
never totally contained by the capitalist economy.” 32

We can find some evidence of this in the social energies of the free and open source
movement, for instance, where compensation operates at the level of social exchange. This
claim then serves to shift attention from the efforts of the individual to social relations. The
politics of this is especially important if we are to develop a position different from the logic
of “capture all” and look to more positive, and hopeful interpretations. Referring to button
pressing, Terranova describes social relations as an asymmetrical relations between two
poles — one active, the other receptive. To her, actions such as “liking and being liked, writing
and reading, looking and being looked at, tagging and being tagged,” are examples of the
transition from individual to collective forms. She considers how “these actions become
discrete technical objects (like buttons, comment boxes, tags, etc.) which are then linked to
underlying data structures,” and, in turn, how these actions express the possibility of being
able to experiment with processes of “individuation” and “transindividuation,” i.e. the
possibility of social transformation itself.

This line of argument makes reference to the philosophy of Gilbert Simondon, to the
transformational process by which individuation — how a person or thing is identified as
distinguished from other persons or things — is caught up with other individuations. There is
no space (or need, we think) to go into this in detail in this publication, but for now it suffices
to say that transindividuation describes the shift between the individual “I” and the collective
“We” and how they are transformed through one another. 33 We hope something of this
happens to this book project, which is already collective by design, but also opens up further
possibilities for the production of new versions and social relations in its reworking. Of course
this involves tinkering with the underlying codes and values associated with data capture,
and our ability to reinvent the latter’s main purpose. This is an open invitation to not only
capture data, but to also unleash its other potentials.

4. Data capture

117

MiniX: Capture All

Objective:

– To experiment with various data capture inputs, including audio, mouse,
keyboard, webcam, and more.

– To critically reflect upon the process of data capture and datafication.

For additional inspiration:

– LAUREN by Lauren McCarthy (2017), http://lauren-mccarthy.com/LAUREN.
– nonsense by Winnie Soon (2015), http://siusoon.net/nonsense/. (Read the

comment in the source code for this project’s intentions.)
– Facebook Demetricator by Benjamin Grosser (2012-present),

https://bengrosser.com/projects/facebook-demetricator/, and subsequent
Instagram Demetricator , https://bengrosser.com/projects/instagram-
demetricator/ or Twitter Demetricator ,
https://bengrosser.com/projects/twitter-demetricator/.

Tasks (RunMe):

1. Experiment with various data capture input and interactive devices, such as audio,
mouse, keyboard, webcam/video, etc.

2. Develop a sketch that responds loosely to the transmediale open call “Capture All,”
https://transmediale.de/content/call-for-works-2015. (Imagine you want to
submit a sketch/artwork/critical or speculative design work to transmediale as
part of an exhibition.)

Questions to think about (ReadMe):

– Provide a title for and a short description of your work (1000 characters or less)
as if you were going to submit it to the festival.

– Describe your program and what you have used and learnt.
– Articulate how your program and thinking address the theme of “capture all.”
– What are the cultural implications of data capture?

http://lauren-mccarthy.com/LAUREN
http://siusoon.net/nonsense/
https://bengrosser.com/projects/facebook-demetricator/
https://bengrosser.com/projects/instagram-demetricator/
https://bengrosser.com/projects/twitter-demetricator/
https://transmediale.de/content/call-for-works-2015

Aesthetic Programming

118

Required reading

– Carolin Gerlitz and Anne Helmond, “The Like Economy: Social Buttons and the Data-
Intensive Web,” New Media & Society 15, no. 8, December 1 (2013): 1348–65.

– “p5.js examples - Interactivity 1,” https://p5js.org/examples/hello-p5-interactivity-1.html.

– “p5.js examples - Interactivity 2,” https://p5js.org/examples/hello-p5-interactivity-2.html.

– “p5 DOM reference,” https://p5js.org/reference/#group-DOM.

– Shoshana Zuboff, “Shoshana Zuboff on Surveillance Capitalism | VPRO Documentary,”
https://youtu.be/hIXhnWUmMvw.

Further reading

– Christian Ulrik Andersen and Geoff Cox, eds., A Peer-Reviewed
Journal About Datafied Research 4, no. 1 (2015),
https://aprja.net//issue/view/8402.

– Audun M. Øygard, “clmtrackr - Face tracking JavaScript library,”
https://github.com/auduno/clmtrackr.

– Søren Pold, “Button,” in Fuller, ed., Software Studies .

– Daniel Shiffman, HTML / CSS/DOM - p5.js Tutorial
(2017), https://www.youtube.com/playlist?list=PLRqwX-
V7Uu6bI1SlcCRfLH79HZrFAtBvX.

– Tiziana Terranova, “Red Stack Attack! Algorithms, Capital and the
Automation of the Common,” EuroNomade (2014),
http://www.euronomade.info/?p=2268.

https://p5js.org/examples/hello-p5-interactivity-1.html
https://p5js.org/examples/hello-p5-interactivity-2.html
https://p5js.org/reference/#group-DOM
https://youtu.be/hIXhnWUmMvw
https://aprja.net//issue/view/8402
https://github.com/auduno/clmtrackr
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6bI1SlcCRfLH79HZrFAtBvX
http://www.euronomade.info/?p=2268

4. Data capture

119

Notes

1. This resonates with the field of data
visualization, and Edward Tufte’s belief
that data should be allowed to “speak for
itself” rather than be lost in the
ornamentation of visualization. This
makes the mistake in thinking that data is
raw and unmediated. Data begins
relatively raw and uninterpreted, but in
practice is already selected, targeted,
preprocessed and cleaned, mined, and so
on, not least to make it human readable.
There is always some additional
information about its composition, usually
derived from the means by which it was
gathered in the first place. See Edward R.
Tufte, The Visual Display of
Quantitative Information [1983]
(Cheshire, CT: Graphics Press, 2001).

2. Christian Ulrik Andersen and Geoff Cox,
eds., A Peer-Reviewed Journal About Datafi
ed Research, APRJA 4, no.1 (2015).

3. Kenneth Cukier and Victor Mayer-
Schöenberger, “The Rise of Big Data,”
Foreign Affairs (May/June 2013): 28–
40.

4. Shoshana Zuboff, “Shoshana Zuboff on
Surveillance Capitalism | VPRO
Documentry,” vpro documentary.
Accessed April 26 (2020). https://youtu.
be/hIXhnWUmMvw. See her book, The
Age of Surveillance Capitalism: The
Fight for a Human Future at the
New Frontier of Power (New York:
PublicAffairs, 2019).

5. Søren Pold, “Button,” in Matthew Fuller
ed., Software Studies (Cambridge,
Mass.: MIT Press, 2008), 34. Users are
seduced by the wording of the button not
least, and Pold suggests that a button is
developed with distinct functionality and
signification (Ibid., 31).

6. Carolin Gerlitz and Anne Helmond, “The
Like Economy: Social Buttons and the
Data-Intensive Web,” New Media &
Society 15, no.8, December 1 (2013): 1348–
65.

7. The styling of the button is exactly the
same as Facebook’s like button styling in
2015.

8. https://p5js.org/reference/#group-DO
M.

9. See the p5.Element method list here, http
s://p5js.org/reference/#/p5.Element.

10. Styling a button follows the syntax of
CSS, and that controls how a DOM
element like a button should be
displayed. The provided example shows
how CSS is incorporated into the
JavaScript file by using the syntax
button.style('xxx:xxxx');. Another way of
doing this is to follow the convention of
having a CSS file that lists the .class
selector. In this way, you need to have the
syntax in the JavaScript file to mark the
class name: button.class('class_name');,
and then list out the CSS elements and
class attributes in the CSS file. More
examples can be found here: https://ww
w.w3schools.com/csS/css3_buttons.as
p, and see Daniel Shiffman’s video on the
basic of CSS, https://www.youtube.co
m/watch?v=zGL8q8iQSQw.

11. The related function in the reference page,
which is under Events > Mouse>, see http
s://p5js.org/reference/.

12. The related function in the reference page,
which is under Events > Keyboard>, see h
ttps://p5js.org/reference/.

13. See the sound library’s various features: h
ttps://p5js.org/reference/#/libraries/
p5.sound.

14. See https://www.auduno.com/2014/0
1/05/fitting-faces/.

15. Jason M. Saragih, Simon Lucey and Jeffrey
F. Cohn, “Face Alignment Through
Subspace Constrained Mean-shifts,”
2009 IEEE 12th International
Conference on Computer Vision,
Kyoto (2009): 1034-1041. doi:
10.1109/ICCV.2009.5459377.

16. The introduction of legislation such as the
GDPR (General Data Protection
Regulation) is a response to this lack of
transparency. GDPR is a regulation in EU
law (2016) on data protection and privacy
that applies to all the citizens of the
European Union and the European
Economic Area. It also addresses the
transfer of personal data outside the EU
and EEA areas. See https://gdpr-info.e
u/.

17. The Guardian’s coverage of this, “The
Cambridge Analytica Files,” can be found
at https://www.theguardian.com/new
s/series/cambridge-analytica-files.
Facebook was ultimately forced to pay a
hefty fine, see Alex Hern, “Facebook
agrees to pay fine over Cambridge
Analytica scandal,” The Guardian ,
October 30 (2019), https://www.theguar
dian.com/technology/2019/oct/30/fac
ebook-agrees-to-pay-fine-over-cambridge-
analytica-scandal

18. Will Conley, “Facebook investigates
tracking users’ cursors and screen
behavior,” Slashgear, October 30 (2013).
Available at: https://www.slashgear.co
m/facebook-investigates-tracking-users-c
ursors-and-screen-behavior-30303663/.

19. Affordance provides cues which give a hint
how users may interact with something.
See James J. Gibson, The Theory of
Affordances,” in Robert Shaw and John
Bransford, eds. Perceiving, Acting, and
Knowing (Hillsdale, NJ: Lawrence
Erlbaum Associates, 1977), 127–143.

20. Rena Bivens, “The Gender Binary will not
be Deprogrammed: Ten Years of Coding
Gender on Facebook,” New Media &
Society 19, no.6, (2017): 880–898.
doi.org/10.1177/1461444815621527.

21. Facebook, Form S-1 registration
statement (2012). Available at: https://in
fodocket.files.wordpress.com/2012/02/f
acebook_s1-copy.pdf.

22. Esther Leslie, “The Other Atmosphere:
Against Human Resources, Emoji, and
Devices,” Journal of Visual Culture 18
no.1, April (2019).

23. Laurie Clarke, “Why hiding likes won’t make
Instagram a happier place to be,” Wired,
July 19 (2019), https://www.wired.co.u
k/article/instagram-hides-likes.

24. See Ben Grosser’s Demetricator series of
artworks: Facebook Demetricator , http
s://bengrosser.com/projects/facebook
-demetricator/; Instagram
Demetricator, https://bengrosser.com/
projects/instagram-demetricator/;
Twitter Demetricator , https://bengross
er.com/projects/twitter-demetricator/.

25. Sauvik Das and Adam D. I. Kramer, “Self-
censorship on Facebook,” AAAI
Conference on Weblogs and Social
Media (ICWSM), July 2 (2013), http
s://research.fb.com/publications/self-c
ensorship-on-facebook/.

26. Zuboff, Shoshana Zuboff on
Surveillance Capitalism | VPRO
Documentry.

27. Paraphrasing the final lines of Leslie’s
essay “The Other Atmosphere: Against
Human Resources, Emoji, and Devices”:
“The workers become their own devices.
They becomes devices of communicative
capitalism […].”

28. Jonathan Crary, 24/7: Late
Capitalism and the Ends of Sleep
(London: Verso, 2013), 30–31.

29. Crary, 24/7, 10-11.
30. transmediale, Capture All , https://trans

mediale.de/content/call-for-works-2015.

https://tidsskrift.dk/APRJA/issue/view/8402
https://youtu.be/hIXhnWUmMvw
https://p5js.org/reference/#group-DOM
https://p5js.org/reference/#/p5.Element
https://www.w3schools.com/csS/css3_buttons.asp,
https://www.youtube.com/watch?v=zGL8q8iQSQw
https://p5js.org/reference/
https://p5js.org/reference/
https://p5js.org/reference/#/libraries/p5.sound
https://www.auduno.com/2014/01/05/fitting-faces/
https://gdpr-info.eu/
https://www.theguardian.com/news/series/cambridge-analytica-files
https://www.theguardian.com/technology/2019/oct/30/facebook-agrees-to-pay-fine-over-cambridge-analytica-scandal
https://www.slashgear.com/facebook-investigates-tracking-users-cursors-and-screen-behavior-30303663/
https://infodocket.files.wordpress.com/2012/02/facebook_s1-copy.pdf
https://www.wired.co.uk/article/instagram-hides-likes
https://bengrosser.com/projects/facebook-demetricator/
https://bengrosser.com/projects/instagram-demetricator/
https://bengrosser.com/projects/twitter-demetricator/
https://research.fb.com/publications/self-censorship-on-facebook/
https://transmediale.de/content/call-for-works-2015

Aesthetic Programming

120

31. Tiziana Terranova, “Red Stack Attack!
Algorithms, Capital and the Automation of
the Common,” EuroNomade (2014).
Available at http://www.euronomade.inf
o/?p=2268

32. Terranova, “Red Stack Attack!”

33. To Bernard Stiegler, explains Irit Rogoff,
“The concept of ‘transindividuation’ is one
that does not rest with the individuated ‘I’
or with the interindividuated ‘We’,” but “is
the process of co-individuation within a
preindividuated milieu and in which both
the ‘I’ and the ‘We’ are transformed
through one another.” See Bernard
Stiegler and Irit Rogoff,
“Transindividuation,” e-flux 14, March
(2010), https://www.e-flux.com/journa
l/14/61314/transindividuation/.

34. Terranova, “Red Stack Attack!”

http://www.euronomade.info/?p=2268
https://www.e-flux.com/journal/14/61314/transindividuation/

5. Auto-generator

121

5. Auto-generator

5. Auto-generator

setup()

Required reading

MX

start()

While()

Exercise in class:
10 PRINT

Langton's Ant

Source code
(Langton's Ant)

Reading
Langton's Ant

Two-dimensional arrays
& nested for-loops Exercise in class

Notes

Further reading

123

126

127

128

131
133

134

135

136

139

140

140

141

Contents

– setup()

– start()

– Exercise in class (10 PRINT)

– Langton’s Ant

– Source code (Langton’s Ant)
– Reading Langton’s Ant

– Two-dimensional arrays & nested for-loops

– Exercise in class

– While()

– MiniX: A generative program

– Required reading

– Further reading

– Notes

5. Auto-generator

123

setup()

While the previous chapter discussed the data capture underlying the interaction with input
devices, this chapter follows the concepts of input and output to introduce the idea of the
abstract machine. This refers to the creation of rules by a self-operating machine, widely
known as an abstract machine or Turing machine. It was mathematician and computer
scientist Alan Turing who first described this machine in his famous article “On Computable
Numbers, with an Application to the Entscheidungsproblem,” published in 1936. 1 He used
the term “universal computing machine” to theorize a model that describes how a machine
“can be used to compute any computable sequence,” 2 i.e. how a machine operates, and
follows a predetermined sequence of instructions that process input and produce output.

More specifically, the Turing machine is capable of six types of fundamental operations (at
the time there wasn’t a thing called a computer) including read, write, move left, move right,
change state and halt/stop. Turing suggested these operations could be performed by
running an endless tape (that worked like memory does in a modern computer) with
instructions on what symbols to read and write, as well as how to move. These instructions
constitute the fundamental principles of the Turing machine, 3 but also modern computing,
with the capability to compute numeric tasks and automate various processes. These
instructions from a base level of computing seem to underwrite the wider processes of
production, consumption and distribution of contemporary (informational) capitalism as we
partly covered in the last chapter.

Figure 5.1: An illustration of the Turing Machine 4

This chapter will explore how instructions are fundamental elements of adaptive systems,
focusing on how rules are performed, and how they might produce unexpected and/or
complex results.

Focusing on rules and instructions is not something only programmers do, but also
something you do when following a knitting/weaving pattern 5 or recipe (as we will see with
the preparation of tofu in the next chapter). Artists have also produced instruction-based
works of art, as is the case of the Fluxus and Conceptual Art movements of the 1960s and
1970s that set out to challenge art’s object-ness, and encourage its “dematerialization.” 6
There are many examples of commentators making the connection between these

Aesthetic Programming

124

instruction-based works and computational art. 7 For instance, the survey exhibition
“Programmed: Rules, Codes, and Choreographies in Art, 1965-2018,” 8 organized by
Christiane Paul at the Whitney Museum of American Art (2018-19), explored how instruction-
based practices have both responded to, and been shaped by technologies. The work of
conceptual artist Sol Le Witt is one of the obvious examples here and demonstrates how
even when based on a set of instructions, the outcome might be different depending on how
the instructions are interpreted by others. For example, the work Wall Drawing #289
consists of three simple instructions, but does not specify the angles and length of the lines:

1. Twenty-four lines from the center.

2. Twelve lines from the midpoint of each of the sides.

3. Twelve lines from each corner.

Figure 5.2: This image is the software version of the work Wall drawing
#289 (1976) by Sol LeWitt, and is further coded by Chuck

Grimmett 9

“The idea becomes a machine that makes the art,” as LeWitt explains. 10 Using the
programming language Processing, 11 this is taken as an invitation by Casey Reas to render
LeWitt’s wall drawings on the basis of their instructions, thereby exploring the parallels of
interpretation and process for each of them. 12 In his accompanying text, Reas makes the
important distinction that LeWitt’s programs are to be carried out by people rather than
machines. Nevertheless it is the close connection and overlap that interests him, and
underlies the development of Processing as a “software sketchbook” as Reas wanted
programming to be as immediate and fluid as drawing.

This is not without precedence. Algorithmic drawing has been explored by artists including
Joan Truckenbrod, for example in her series Coded Algorithmic Drawings that dates back
to the 1970s and 80s. 13 Entropic Tangle (see Figure 5.3) was coded in the Fortran
programming language in 1975, using a mainframe computer with keypunch machine, and
magnetic storage media. The work presents a number of polygons that vary in size, and
angles of rotation that simulate invisible natural forces and incorporate continuity, and
fluctuations by using variables and mathematical modulation. Truckenbrod is interested in

5. Auto-generator

125

how “natural” forces get re-interpreted by symbols and numbers that further demonstrate
the nature of ambiguity and spontaneity in systems. 14 Recursive fractal geometry 15 and
flocking behaviors 16 are examples that demonstrate “entropic” qualities (lack of order or
predictability) based on the self-organization of computation and autonomous agents 17
that evolve over time.

Figure 5.3: Joan Truckenbrod, Entropic Tangle (1975). Courtesy of
the artist

This kind of approach is important, not only because it offers a different way of drawing and
authoring works by machines based on mathematical logic, but also to provide a sense of
machine creativity that — as in the previous chapter — negates intentionality 18 and
questions the centrality of human (more often than not, masculinist) agency. In this chapter
we aim to explore more complex combinations (or inter-species relations 19) of humans
and machines, nonhumans or animals (namely, ants).

If we were to draw an ellipse in white color at the x and y coordinate 100 and 120, the
outcome of the instruction is predictable. But this needs not be the case as certain kinds of
instructions or combinations of instructions can generate unruly results. As described in the
book 10 PRINT CHR$(205.5+RND(1)); : GOTO 10, the 10 Print program
utilizes randomness to generate unpredictable processes and outcomes that seem random
to humans. This “generative” capacity questions the extent of control over the creative
process, as the following definition of generative art reveals:

Aesthetic Programming

126

“Generative art refers to any art practice where [sic] artists use a system, such as a
set of natural languages, rules, a computer program, a machine, or other procedural
invention, which is set into motion with some degree of autonomy contributing to or
resulting in a completed work of art.” 20

Significantly this definition does not limit itself to the use of computers and this is important
to bear in mind as we proceed to focus on our sample code. The following two examples 21
explore rule-based programs that address some of these issues of auto-generation, but as in
previous examples we are interested in the wider implications that include hidden labor, and
other issues concerning autonomy.

start()

The first program is called 10 PRINT referring to one line of program code 10 PRINT
CHR$(205.5+RND(1));: GOTO 10, written in the BASIC programming language and executed on a
Commodore 64 (a popular home computer during the 1980s). The program generates an
endless pattern on the screen. The line of code was printed in the 1982 Commodore 64
User’s Guide and was later published online, and has become an important example in the
field of software studies for demonstrating the history and culture of creative computing. 22
10 PRINT in p5.js below is used to help familiarize us with the rules and its creative
potential as it demonstrates some degree of autonomy within a system.

The second program is entitled Langton’s Ant (1986). It is a two-dimensional universal
Turing machine invented in 1986 by the computer scientist Christopher Langton who is
considered to be one of the founders of the artificial life field. 23 The core difference with 10
PRINT is the way in which it generates complex, emergent behavior using only a simple
set of rules.

5. Auto-generator

127

Exercise in class (10 PRINT)

Figure 5.4: 10 PRINT in p5.js

RunMe https://aesthetic-
programming.gitlab.io/book/p5_SampleCode/ch5_AutoGenerator/

let x = 0;1

let y = 0;2

let spacing = 10;3

4

function setup() {5

 createCanvas(windowWidth, windowHeight);6

 background(0);7

}8

9

function draw() {10

 stroke(255);11

 if (random(1) <0.5) { 12

 line(x, y, x+spacing, y+spacing);13

 } else {14

 line(x, y+spacing, x+spacing, y);15

https://aesthetic-programming.gitlab.io/book/p5_SampleCode/ch5_AutoGenerator/

Aesthetic Programming

128

1. Read the source code of 10 PRINT above, then copy it, and run it on your
own computer.

2. Discuss the following 10 PRINT rules and map them to the related
lines/blocks of code 24 :

– Throw a dice and print a backslash half the time

– Print a forward slash the other half of the time

3. Drawing on the text “Randomness”:

– How is control being implemented in 10 PRINT?

– What might the (un)predictability of regularity be?

– What is randomness to a computer? 25

– Discuss the use and the role of randomness in 10 PRINT, and more
generally in the arts, including literature, and games?

4. Try to modify the existing rules, for example:

– Can we change the size, color, and spacing of the slashes?

– Can we have outputs other than just the backward and forward slashes?

5. 10 PRINT has been appropriated by many artists, designers and students.
Take a look at some of the different options it provides 10 PRINT that are
documented on Twitter with the hastag “#10print.” Your task in class is to create a
sketch with a clear set of rules that operates like a modified version of 10
PRINT.

Langton’s Ant

While 10 Print focuses both on instructions and randomness as generative processes, we
want to look at the concept of “emergence” in the context of automated and generative
programs in which complex patterns/outcomes are generated by simple rules. Langton’s

 }16

 x+=10;17

 if (x > width) {18

 x = 0;19

 y += spacing;20

 }21

}22

https://twitter.com/search?q=%2310print&src=typd

5. Auto-generator

129

Ant is a classic mathematical game that simulates the molecular logic of an ant. The
simulation of the cell’s state is inspired by the classic Turing machine that can be instructed
to perform computational tasks by reading symbols fed to it on a strip of tape that were
drawn up according to a set of rules.

The next section provides the sample code that simulates the cell states, presented as a
two-dimensional grid system in either black or white. Based on simple rules (as described
below), an ant is considered to be the sensor that processes the cell’s data as input, then
the cell will change its color and the ant will move in four possible directions. Gradually, the
ant will turn the grid into a more complex system that exhibits emergent behavior.

Figure 5.5: Langton’s Ant - initial steps

Aesthetic Programming

130

With the ant initially facing up, Figure 5.5 shows the first thirty-three steps of Langton’s Ant
when it follows the two general rules below:

1. If the ant is at a white cell, it turns right 90 degrees and changes to black, then moves
forward one cell as a unit.

2. If the ant is at a black cell, it turns left 90 degrees and changes to white, then moves
forward one cell as a unit.

In the beginning, the canvas only displays a grid system and all the individual cells are set to
white. The ant has four possible directions it can move in — UP, RIGHT, DOWN, and LEFT —
turning 90 degrees either left or right subject to the color of the cell it is on. The ant, located
in the center of the white grid has its head pointing UP at the start. It then follows Rule 1
above to rotate the head direction from UP to RIGHT, thereby changing the white cell to
black, and moving forward one unit. The second step is to follow Rule 1 again, because the
new cell is still white. The ant’s head direction will turn right 90 degrees and point from RIGHT
to DOWN, and then it changes the white cell to black and the ant moves forward one unit.
The third and forth steps are similar to the previous ones, until the ant encounters a black
cell. At this point, the ant will follow Rule 2 and change the cell’s color back to white, and then
turn left 90 degrees instead of right. The complexity increases.

Figure 5.6: Langton’s Ant - process

Figure 5.6 shows how the ant starts building the emergent “highway” pattern after the first
few hundred moves with simple symmetrical patterns. Then the symmetry breaks down and
the ants seems to move randomly at the center. After several thousand iterations, the ant
then starts building a highway pattern, and repeats indefinately until most of the cells are
reconfigured, leading to something that is similar to Figure 5.7, while the ant continues to
move and change the color of cells. 26

5. Auto-generator

131

Figure 5.7: Langton’s Ant - snapshot of emergence

RunMe https://aesthetic-
programming.gitlab.io/book/p5_SampleCode/ch5_AutoGenerator/sketch5_1/

Source code (Langton’s Ant)

//e.g 4, 5, 10 need to be dividable by the w and h of the canvas1

let grid_space = 5;2

let grid =[]; //on/off state3

//for drawing the grid purpose4

let cols, rows;5

//current position in terms of rows and columns, not actual pixels6

let xPos, yPos;7

//current direction of the ant8

let dir;9

const antUP = 0;10

const antRIGHT = 1;11

const antDOWN = 2;12

const antLEFT = 3;13

let offColor;14

let onColor;15

16

function setup() {17

 createCanvas(1000, 700);18

 offColor = color(255); //offcolor setting19

 onColor = color(0); //onColor setting20

https://aesthetic-programming.gitlab.io/book/p5_SampleCode/ch5_AutoGenerator/sketch5_1/

Aesthetic Programming

132

 background(offColor);21

 grid = drawGrid();22

 xPos = floor(cols/2); //initial x position in integer23

 yPos = floor(rows/2); //initial y position in integerS24

 dir = antUP; //initial direction25

 frameRate(20);26

}27

function draw() {28

 /*just for running faster perframe,29

 try changing the number e.g 1 instead of 100 */30

 for (let n = 0; n < 100; n++) {31

 checkEdges();32

 let state = grid[xPos][yPos];33

 //check the current cell's state34

 //rule 135

 if (state == 0) {36

 dir++; // turn right 90°37

 grid[xPos][yPos] = 1; //change the currect cell's state to 'on'38

 fill(onColor); //subsequent color change39

 if (dir > antLEFT) {40

 dir = antUP; //reset the counter41

 }42

 //rule 243

 }else{44

 dir--; //turn left 90°45

 grid[xPos][yPos] = 0; //change the current cell's state to 'off'46

 fill(offColor); //subsequent color change47

 if (dir < antUP) {48

 dir = antLEFT; //reset the counter49

 }50

 }51

 rect(xPos*grid_space, yPos*grid_space, grid_space, grid_space);52

 nextMove();53

 }54

}55

function drawGrid() {56

 cols = width/grid_space;57

 rows = height/grid_space;58

 let arr = new Array(cols);59

 for (let i = 0; i < cols; i++) { //no of cols60

 arr[i] = new Array(rows); //2D array61

 for (let j = 0; j < rows; j++){ //no of rows62

 let x = i * grid_space; //actual x coordinate63

 let y = j * grid_space; //actual y coordinate64

 stroke(0);65

 strokeWeight(1);66

 noFill();67

5. Auto-generator

133

Reading Langton’s Ant

There are three areas that can help you to zoom in on the program to slow down and adjust
the size.

1. let grid_space = 5; in Line 2: If you change the value to 10, everything will be enlarged.

2. frameRate(20); in Line 26: Lower the frame rate value to help slow down the program.

3. draw() in Line 28: This function contains a for-loop where n is the ant’s number of steps. If
so desired you can reduce the n < 100 to n < 1 (in Line 31), i.e for (let n = 0; n < 100;
n++) { this instructs the program to only process n steps per frame.

Instead of going through the code line by line, the following shows what each function does.

 rect(x, y, grid_space, grid_space);68

 arr[i][j] = 0; // assign each cell with the off state + color69

 }70

 }71

 return arr; //a function with a return value of cell's status72

}73

function nextMove () {74

 //check which direction to go next and set the new current direction75

 if (dir == antUP) {76

 yPos--;77

 } else if (dir == antRIGHT) {78

 xPos++;79

 } else if (dir == antDOWN) {80

 yPos++;81

 } else if (dir == antLEFT) {82

 xPos--;83

 }84

}85

function checkEdges() {86

 //check width and height boundary87

 if (xPos > cols-1) { //reach the right edge88

 xPos = 0; //go back to the left89

 } else if (xPos < 0) { //reach the left edge90

 xPos = cols-1; //go to the right edge91

 }92

 if (yPos > rows-1) { //reach the bottom edge93

 yPos = 0; //go back to the top94

 } else if (yPos < 0) { //reach the top edge95

 yPos = rows-1; //go to the bottom96

 }97

}98

Aesthetic Programming

134

– function setup() in Line 17: To setup the canvas size, initiate the ant’s head direction,
frame rate, color, and to prepare drawing the background grid structure.

– function drawGrid() in Line 56: To divide the canvas into a grid.
– function draw(): This main function checks the two rules that apply for Langton’s Ant

and change the color of cells.
– function nextMove() in Line 74: The four directions are structured in a number format so

that the variable dir++ can be used to change the ant’s direction by implementing the
increment and decrement of the ant’s direction in programming terms (i.e dir++ or dir--).
Each different direction (UP, RIGHT, DOWN, LEFT) corresponds to moving forward along
either the horizontal (xPos) or the vertical (yPos) axis on the canvas.

– function checkEdges() in Line 86: This function checks whether the ant moves out of frame.
When it does, the program is written in such a way that it appears on the opposite side
and continues.

Technically speaking, there is no new syntax here as the two-dimensional arrays have already
been covered briefly in the previous chapter. However, there is a new use of two-dimensional
arrays and nested for-loops in the sample code.

Two-dimensional arrays &

nested for-loops

Daniel Shiffman has created a tutorial (written 27 and video 28) to discuss how a two-
dimensional array is essentially an array of other arrays. He also suggests that it is useful to
think of two-dimensional arrays using a grid structure which aligns nicely with the background
of Langton’s Ant which is designed as a grid in two dimensions with both columns and
rows. Since we need to identify the state of each cell, we need to know the exact x and y
position of each cell.

Let’s examine the source code again for the grid background drawing:

function drawGrid() {1

 cols = width/grid_space;2

 rows = height/grid_space;3

 let arr = new Array(cols);4

 for (let i = 0; i < cols; i++) { //no of cols5

 arr[i] = new Array(rows); //2D array6

 for (let j = 0; j < rows; j++){ //no of rows7

 let x = i * grid_space; //actual x coordinate8

 let y = j * grid_space; //actual y coordinate9

 stroke(0);10

 strokeWeight(1);11

 noFill();12

 rect(x, y, grid_space, grid_space);13

5. Auto-generator

135

To create an array, we use the syntax let arr = new Array(cols); (in Line 4) and this line
indicates the grid in columns and the length of the array is the same as the number of
columns. Since we also need to indicate the number of rows, we create another array out of
each existing array in the column using the line arr[i] = new Array(rows); (see Line 6). This
syntax is put under a for-loop to loop through each of the columns, but then with the
addition of number of rows (which is derived from the canvas height). Two-dimensional
arrays are structured in this way: arr[][].

To know the exact x and y coordinates of each cell within a grid, we use the formula x = i *
grid_space; and y= j * grid_space; respectively. By using two nested for-loops (see Lines 5 &
7), the program loops through each column and each row until the program reaches the last
column. We are able to get the x and y coordinates with the syntax array[i][j], which is
applied to columns (with the variable i) and rows (with the variable j).

Therefore, each cell from the grid is represented in the structure of a two-dimensional array.
As demonstrated above, you can zoom in or enlarge the cell size by changing the variable
grid_space, and the number of columns and rows depends on the canvas width and height as
derived from cols = width/grid_space; and rows = height/grid_space;. Each cell, in the form of
array[i][j], is a unit represents a possibility that an ant can move within the grid (via the
changing values of i and j).

The customized function drawGrid() is slightly different from what we have discussed in
Chapter 3, “Infinite loops.” This function comes with returned values (in Line 17): return arr;.
This means that the function will return the values arr (in the form of two-dimensional arrays)
when it has completed. In this Langton’s Ant example, this function is used to draw the
grid background, and to mark the initial status (off state) of each cell unit for later use when
the ant is started to move.

Exercise in class

1. Give yourself sometime to read and tinker with the code, as well as to observe the
different stages of Langton’s Ant.

2. The Langton’s Ant program represents the world of an ant through abstraction,
and sets limits on cell color, movement and direction. Rethink the rules that have
been implemented. Try changing the existing rules or adding new rules so that the
ant behaves differently? (Recall what you have changed in the previous exercise
with 10 PRINT.)

 arr[i][j] = 0; // assign each cell with the off state + color14

 }15

 }16

 return arr; //a function with a return value of cell's status17

}18

Aesthetic Programming

136

3. In simulating living systems — such as the complex behavior of insects — there
seems to be a focus on process over outcome. Let’s discuss the following
questions:

– Can you think of, and describe, other systems and processes that exhibit
emergent behavior?

– How would you understand autonomy in this context? 29 To what extent do
you consider the machine to be an active agent in generative systems? What
are the implications for wider culture?

While()

We already have discussed the idea of unleashing potential for changes in the previous
chapter, and it would seem that generative systems promise something similar as a way to
envisage existing systems as changeable or adaptive to conditions. The parallel to living
systems is made clear in Game of Life — developed by the mathematician Jon Conway in
1970 30 — another example of a Turing machine and how an evolutionary process is
determined by its initial state, requires no further input, and produces emergent forms. 31
Like Langton’s Ant, it is similarly based on principles of “cellular automata,” i.e. a regular
grid of cells, each in one of a finite number of states, such as on or off, or alive or dead, in this
case. These are powerful metaphors with real-world applications.

Each cell interacts with other, directly adjacent, cells, and the following transitions occur:

– Any live cell with fewer than two live neighbors dies, as if by underpopulation.
– Any live cell with two or three live neighbors lives on to the next generation.
– Any live cell with more than three live neighbors dies, as if by overpopulation.
– Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.

If the evolutionary neo-Darwinian logic of this — where the fittest survive — were not worrying
enough, Game of Life is further troubling for its “necropolitical” dimension 32 : articulating
life and death in terms of populations and neighborhoods, as if part of a social cleansing
program (or dystopian smart city 33 project). Is this simply an example of
poor abstraction?

That said, there is an alternative political potential here in the way an adaptive complex
organism can assemble itself “bottom-up,” without a central “top-down” command and
control mechanism. 34 This demonstrates “revolutionary” potential when it becomes
impossible to predict the direction change will take, and whether it will fall into a higher level
of order or disintegrate into chaos. Returning to ants, the study of ant colonies reveal there is
no discernible hierarchy at work, and although humans have named the ants in provocative
terms, the “queen” is not an authority figure at all but an egg-laying functionary, and the ant-

5. Auto-generator

137

workers operate a cooperatively rather than feudally (incidentally, the worker ants are all
female, however the sexual politics of ants are outside our scope, and we are also aware of
the inferred racial dimension with the shift of cell color in the Langton’s Ant example).

To be more precise, and according to complexity theory, all systems contain subsystems
that continually fluctuate. One or more fluctuations, resulting from feedback, could change
the preexisting organization, and as such the multiple interacting elements of a system
cannot be governed, and the collective behavior cannot be predicted. As Ilya Prigogine and
Isabelle Stengers explain in Order Out of Chaos :

“A society defined entirely in terms of a functional model would correspond to the
Aristotelian idea of natural hierarchy and order. Each official would perform the duties
for which he [sic] has been appointed. These duties would translate at each level the
different aspects of the organization of the society as a whole. The king gives orders
to the architect, the architect to the contractor, the contractor to the worker. On the
contrary, termites and other social insects seem to approach the ‘statistical’ model.
As we have seen, there seems to be no mastermind behind the construction of the
termites’ nest, when interactions among individuals produce certain types of
collective behavior in some circumstances, but none of these interactions refer to
any global task, being all purely local.” 35

To help understand emergent behavior, we might turn to Turing’s article of 1952 “The
Chemical Basis of Morphogenesis” for its description of the way in which natural patterns
naturally arise from homogeneous, uniform states. 36 This idea of “morphogenesis” is
something that political theorist and activist Franco “Bifo” Berardi has utilized to describe
social and political mutation, or when new form emerges and takes shape. Processes of
automation have not only replaced physical acts of production with information technology,
but automation has transformed cognitive activity itself. To Berardi, this “implies the
reduction of cognitive activity to algorithmic procedures, and the insertion of “automatisms
into the social existence of the general intellect.” 37 One of the consequences of this is that
automation is taking the place of political decision-making — “Yes or no […] no nuances, no
ambiguity” — and to Berardi this implies the end of democracy, and the establishment of an
automatic chain of logical procedures intended to replace conscious voluntary choices, and
decision-making. Not only have machines captured the human capacity for thinking,
according to Berardi, but also our capacity to feel. 38 Part of the problem he identifies is
that we have been learning words from machines, not from other humans, 39 the
consequence of which is that our capacity for love, tenderness, and compassion are
lessened. We might add “care” to this list, thereby invoking feminist technoscience, such as
Maria Puig de la Bellacasa’s work. For Bellacasa, care is important as it draws attention to
how things are held together, to their relationalities, “transforming things into matters of
care is a way of relating to them, of inevitably becoming affected by them, and of modifying
their potential to affect others.” 40

Along these lines, and drawing upon feminist technoscience, Helen Pritchard and Winnie
Soon’s artwork Recurrent Queer Imaginaries is a motto assistant that endlessly
generates mottos as a form of rethinking, reinterpreting and dreaming urban life. In light of
the rich history of struggles for racial, sexual and class injustice, the motto assistant uses

Aesthetic Programming

138

manifestos and zines for queer and intersectional life as source text for machine learning and
generative processes. 41 A further example of this approach to care in action is the syllabus
Digital Love Languages at the School for Poetic Computation 42 , where the instructor
Melanie Hoff explores how code can be cultivated as a “love language” that is more gentle,
healing, and intimate than corporate systems of surveillance and exploitation. 43 The course
covers the building blocks of programming and natural language processing as well as
explores the history of the love letter as a poetic form.

This discussion of more love and care in programming brings us to our last example, the
generative “love-letters” that appeared on the Manchester University Computer
Department’s noticeboard in 1953. These computer-generated declarations of love were
produced by a program written by Christopher Strachey using the built-in random generator
function of the M. U. C.(Manchester University Computer, the Ferranti Mark I), the earliest
programmable computer. Regarded by some as the first example of digital art, 44 and by
Jacob Gaboury as a critique of hetero-normative love, not least because Strachey like Turing
was queer. 45 Moreover these letters are arguably more than a longing for same sex love,
but human-machine love.

Artist David Link built a functional replica of both the hardware and the original program,
following meticulous research into the functional aspects. 46 The main program is relatively
simple, and uses loops and a random variable to follow the sentence structure: “You are my
— Adjective — Substantive,” and “My — [Adjective] — Substantive — [Adverb] — Verb — Your —
[Adjective] — Substantive.” Some words are fixed and some are optional, as indicated by the
square brackets. The program selects from a list of options — adjectives, adverbs, and verbs
— and loops are configured to avoid repetition. The software can generate over 318 billion
variations. In terms of effect, the dialogue structure is important in setting up an exchange
between “Me” (the program writer) and “You” (human reader), so you feel personally
addressed. The resulting love letters provide a surprising tenderness of expression that runs
contrary to what we consider the standard functional outcomes of computational
procedures. This is far from a reductionist view of love, and perhaps the challenge for those
making programs is to generate queer recombinant forms in which neither sender or receiver
are predetermined by specifying gender, species, or forms. We end this chapter with a
sample output:

DEAR DARLING

YOU ARE MY BEAUTIFUL RAPTURE. MY INFATUATION BEAUTIFULLY CLINGS TO YOUR
ADORABLE LUST. MY INFATUATION LUSTS FOR YOUR WISH. MY AMBITION CURIOUSLY
LIKES YOUR LOVE. YOU ARE MY DEAR EAGERNESS.

YOURS WISTFULLY

M. U. C.

5. Auto-generator

139

MiniX: A generative program

Objectives:

– To implement a rule-based, generative program from scratch.
– To strengthen the computational use of loops and conditional statements.
– To conceptually and practically reflect upon the idea of auto-generator.

For additional inspiration:

– {Software} Structure #003 A by Casey Reas (2004),
https://whitney.org/exhibitions/programmed?
section=1&subsection=6#exhibition-artworks.

– Daily Art by Saskia Freeke (2018), http://www.sasj.nl/daily/.
– Generative Artistry by Ruth John and Tim Holman (n.d.),

https://generativeartistry.com/tutorials/.
– Generative Design - sketches (n.d.), http://www.generative-gestaltung.de/2/,

and source code, https://github.com/generative-design/Code-Package-p5.js.
– GenArt by Joseph Fiola (2016), with source code,

https://github.com/JosephFiola/GenArt.
– Game of Life by John Conway (1970),

https://web.archive.org/web/20181007111016/ &
http://web.stanford.edu/~cdebs/GameOfLife/.

– Generative Tarot by Melanie Hoff (2019),
https://www.melaniehoff.com/generativetarot/, source code
https://github.com/melaniehoff/generative-tarot-p5js.

– The Recode Project (featuring projects from 1976-78),
http://recodeproject.com/, and Memory Slam by Nick Montfort (2014),
http://nickm.com/memslam/.

– Solving Sol by Brad Bouse (n.d.), an open project to implement Sol LeWitt’s
instructions in JavaScript https://github.com/wholepixel/solving-sol.

Tasks (RunMe):

1. Start with a blank sheet of paper. Think of at least two simple rules that you want
to implement in a generative program.

2. Based on the rules that you set in Step 1, design a generative program that utilizes
at least one for-loop/while-loop and one conditional statement, but without any
direct interactivity. Just let the program run. You can also consider using noise()
and random() syntax if that helps.

Questions to think about (ReadMe):

https://whitney.org/exhibitions/programmed?section=1&subsection=6#exhibition-artworks
http://www.sasj.nl/daily/
https://generativeartistry.com/tutorials/
http://www.generative-gestaltung.de/2/
https://github.com/generative-design/Code-Package-p5.js
https://github.com/JosephFiola/GenArt
https://web.archive.org/web/20181007111016/
http://web.stanford.edu/~cdebs/GameOfLife/
https://www.melaniehoff.com/generativetarot/
https://github.com/melaniehoff/generative-tarot-p5js
http://recodeproject.com/
http://nickm.com/memslam/
https://github.com/wholepixel/solving-sol

Aesthetic Programming

140

– What are the rules in your generative program? Describe how your program
performs over time? How do the rules produce emergent behavior?

– What role do rules and processes have in your work?
– Draw upon the assigned reading, how does this MiniX help you to understand the

idea of “auto-generator” (e.g. levels of control, autonomy, love and care via
rules)? Do you have any further thoughts on the theme of this chapter?

Required reading

– Nick Montfort et al. “Randomness,” 10 PRINT CHR$(205.5+RND(1)); : GOTO
10, https://10print.org/ (Cambridge, MA: MIT Press, 2012), 119-146.

– Daniel Shiffman, “p5.js - 2D Arrays in Javascript,” Youtube,
https://www.youtube.com/watch?v=OTNpiLUSiB4.

– Jon, McCormack et al. “Ten Questions Concerning Generative Computer Art.” Leonardo 47,
no. 2, 2014: 135–141.

Further reading

– Philip Galanter, “Generative Art Theory,” in Christiane Paul, ed., A
Companion to Digital Art (Oxford: Blackwell, 2016),
http://cmuems.com/2016/60212/resources/galanter_genera
tive.pdf.

– “How to Draw with Code | Casey Reas,” Youtube video, 6:07,
posted by Creators, June 25 (2012),
https://www.youtube.com/watch?v=_8DMEHxOLQE.

– Daniel Shiffman, “p5.js Coding Challenge #14: Fractal Trees -
Recursive,” https://www.youtube.com/watch?v=0jjeOYMjmDU.

– Daniel Shiffman, “p5.js Coding Challenge #76: Recursion,”
https://www.youtube.com/watch?v=jPsZwrV9ld0.

– Daniel Shiffman, “noise() vs random() - Perlin Noise and p5.js
Tutorial,” https://www.youtube.com/watch?v=YcdldZ1E9gU.

https://10print.org/
https://www.youtube.com/watch?v=OTNpiLUSiB4
http://cmuems.com/2016/60212/resources/galanter_generative.pdf
https://www.youtube.com/watch?v=_8DMEHxOLQE
https://www.youtube.com/watch?v=0jjeOYMjmDU
https://www.youtube.com/watch?v=jPsZwrV9ld0
https://www.youtube.com/watch?v=YcdldZ1E9gU

5. Auto-generator

141

Notes

1. Alan Mathison Turing, “On Computable
Numbers, with an Application to the
Entscheidungsproblem,” Proceedings of
the London Mathematical Society 2,
no.1 (1937): 230-265.

2. Turing, “On Computable Numbers,” 241.
3. A visualization of the Turing Machine can

be found here: https://turingmachine.i
o/.

4. This is a modified version of the image
found online, see http://storyofmathem
atics.lukemastin.com/20th_turing.html.

5. The previously mentioned artwork
webmachines by Juli Laczko in Chapter 1,
“Getting started,” shows the relation
between weaving and coding
technologies. See https://digital-power.s
iggraph.org/piece/webmachine/.

6. Reference to Lucy Lippard, ed. Six Years:
The Dematerialization of the Art
Object from 1966 to 1972 (London:
University of California Press, 1997).

7. One example of many, and also
connected to an exhibition, is Geoff Cox’s
“Generator: The Value of Software Art,” in
Judith Rugg and Michèle Sedgwick, eds.,
Issues in Curating Contemporary Art
and Performance (Bristol: Intellect,
2007), 147-162, available at https://mon
oskop.org/images/5/53/Cox_Geoff_20
07_Generator_The_Value_of_Software_
Art.pdf. This includes a description of
Adrian Ward’s Auto-Illustrator, released
as a boxed version for the “Generator”
exhibition (2002-3) with an accompanying
“User’s Manual” that contained both
technical detail and critical essays. In
many ways this sets a precedent for the
publication you are reading. For more on
the aesthetic dimension of the parallels
between scores, scripts, and programs,
see Geoff Cox, Alex McLean, and Adrian
Ward, “The Aesthetics of Generative
Code,” Generative Art 00 , international
conference, Politecnico di Milano (2001), h
ttps://www.academia.edu/10519146/Th
e_Aesthetics_of_Generative_Code.

8. The exhibition “Programmed: Rules,
Codes, and Choreographies in Art, 1965–
2018” was held at the Whitney Museum of
American Art, New York (28 Sep 2018 – 14
Apr 2019), and organized by Christiane
Paul and Carol Mancusi-Ungaro, with
Clémence White. See https://whitney.or
g/exhibitions/programmed. A well-cited,
prior example would be the 1970
exhibition “Software — Information
Technology: Its New Meaning for Art,” at
the Jewish Museum in New York, curated
by Jack Burnham. For Burnham, the
exhibition “Software” encouraged an
understanding of the underlying
structures in art and information systems,
and by drawing together practices in
computer technology with conceptual art,
software was to be seen as a metaphor
for information exchange.

9. This is a version programmed with
JavaScript, using D3, and jquery libraries,
see https://github.com/wholepixel/sol
ving-sol/blob/master/289/cagrimmet
t/index.html.

10. Sol LeWitt cited in Lippard, ed. Six Years:
The Dematerialization of the Art
Object from 1966 to 1972 .

11. Processing is a flexible software
sketchbook and programming language,
initiated by Casey Reas and Ben Fry in
2001, for users to learn how to code within
the context of the visual arts. See http
s://processing.org/.

12. For an explanation of this work, and the
assoicated documentation, see Casey
Reas, “{Software} Structures,” https://ar
tport.whitney.org/commissions/softwar
estructures/text.html.

13. See the Coded Algorithmic Drawings
series here: https://joantruckenbrod.co
m/gallery/#(grid|filter)=.coded.

14. See Joan Truckenbrod’s interview Motion
Through Series , https://vimeo.com/28
6993496.

15. The patterns of fractal geometry are
commonly seen in the tradition of Islamic
and African art, design and architecture,
with the self-similar characteristic that is
generated by repeatable and infinite
processes. Fractal designs in European
and Asian culture tend to mimick nature,
but Ron Eglash observes that the African
designs are more influenced by their own
social structure in which fractals are
regarded as part of a shared culture. See
Ron Eglash, African Fractals: Modern
Computing and Indigenous Design
(New Brunswick, New Jersey, and London:
Rutgers University Press, 1999); also
Laura U. Marks, Enfoldment and
Infinity: An Islamic Genealogy of
New Media Art (Cambridge, MA: The MIT
Press: 2010). See also a coding example
of the use of recursivity in sketching a
fractal tree in p5.js by Martin Žilák, http
s://editor.p5js.org/marynotari/sketche
s/BJVsL5ylz.

16. See Craig Reynold’s flocking behavior with
the p5.js source code, https://p5js.org/
examples/simulate-flocking.html.

17. Agent-based model describes the
mathematical modeling of data as
individual autonomous agent that follow
rules within an environment or a system,
resulting in emergent outcomes of
actions and interactions over time.

18. Inke Arns, “Read_me, run_me,
execute_me: Code as Executable Text:
Software Art and its Focus on Program
Code as Performative Text,” trans. Donald
Kiraly, MediaArtNet (2004), see: http://
www.mediaartnet.org/themes/generativ
e-tools/read_me/1/.

19. Clearly much more could be said about
this, but we refer, our example, to Donna
Haraway’s When Species Meet
(Minneapolis: Uiversity of Minnesota Press,
2007).

20. Philip Galanter, “What is Generative Art?
Complexity Theory as a Context for Art
Theory,” in GA2003 - 6th Generative Art
Conference, Milan (2003).

21. The two code examples in this chapter are
adapted from Daniel Shiffman’s Coding
Train series with the addition of more
comments to explain the logic, as well as
extra features such as adjusting the grid
size in the Langton’s Ant example.

22. Nick Montfort, et al, 10 PRINT CHR
$(205.5+ RND (1));: GOTO 10
(Cambridge, MA: MIT Press, 2012).

https://turingmachine.io/
http://storyofmathematics.lukemastin.com/20th_turing.html
https://digital-power.siggraph.org/piece/webmachine/
https://monoskop.org/images/5/53/Cox_Geoff_2007_Generator_The_Value_of_Software_Art.pdf
https://www.academia.edu/10519146/The_Aesthetics_of_Generative_Code
https://whitney.org/exhibitions/programmed
https://github.com/wholepixel/solving-sol/blob/master/289/cagrimmett/index.html
https://processing.org/
https://artport.whitney.org/commissions/softwarestructures/text.html
https://joantruckenbrod.com/gallery/#(grid|filter)=.coded
https://vimeo.com/286993496
https://editor.p5js.org/marynotari/sketches/BJVsL5ylz
https://p5js.org/examples/simulate-flocking.html
http://www.mediaartnet.org/themes/generative-tools/read_me/1/

Aesthetic Programming

142

23. Christopher G. Langton, “Studying Artificial
Life with Cellular Automata,” Physica D:
Nonlinear Phenomena 22, no.1–3
(October 1986): 120–49, https://doi.or
g/10.1016/0167-2789(86)90237-X.

24. More comment lines are introduced in the
repository, see: https://gitlab.com/sius
oon/Aesthetic_Programming_Book/-/bl
ob/master/public/p5_SampleCode/ch
5_AutoGenerator/sketch.js.

25. See Mads Haahr, “Introduction to
Randomness and Random Numbers,” htt
ps://www.random.org/randomness/;
and Montfortet al, “Randomness,” 119-
146.

26. Andrés Moreira, Anahí Gajardo and Eric
Goles, “Dynamical Behavior and
Complexity of Langton’s Ant,” Complexity
6, no.4 (March 2001): 46–52, https://doi.
org/10.1002/cplx.1042.

27. See “Two-dimensional Arrays” written for
the Processing Community, https://proc
essing.org/tutorials/2darray/.

28. See the video instruction on 2D Arrays in
p5.js at https://www.youtube.com/watc
h?v=OTNpiLUSiB4.

29. For instance, generative artist Marius Watz
would suggest that “autonomy is the
ultimate goal”, from his talk “Beautiful
Rules: Generative Models of Creativity,” in
The Olhares de Outono (2007), http
s://vimeo.com/26594644.

30. More information on Conway’s Game of
Life and related cellular automata can be
found at https://www.conwaylife.com/.

31. For further discussion and the source
code for Conway’s The Game of Life ,
see: https://web.archive.org/web/2018
1007111016/ & http://web.stanford.ed
u/~cdebs/GameOfLife/.

32. Continuing from biopolitics, a term coined
by Michel Foucault to indicate the use of
power to control people’s lives,
necropolitics is the use of social and
political power to dictate how some
people may live and others must die. See
Achille Mbembe, “Necropolitics,” Public
Culture 15, no.1 (2003): 11–40.

33. See the artwork WUOUS by Anders Visti
and Tobias Stenberg which uses an
implementation of Langton’s Ant to
question the procedural logic of so-called
smart cities : https://andersvisti.dk/wor
k/wuos-2019.

34. For more on emergent behaviour, see
Steven Johnson, Emergence: The
Connected Lives of Ants, Brains,
Cities and Software (London: Penguin,
2001), 20.

35. Ilya Prigogine and Isabelle Stengers,
Order Out of Chaos: Man’s New
Dialogue With Nature (London:
Fontana, 1985), 205.

36. Alan Mathison Turing, “The Chemical Basis
of Morphogenesis,” Philosophical
Transactions of the Royal Society of
London B, 237, no.641 (1952): 37–72,
doi:10.1098/rstb.1952.0012. JSTOR
92463.

37. Franco “Bifo” Berardi, “The Neuroplastic
Dilemma: Consciousness and Evolution,”
in e-flux journal #60 (December 2014), h
ttps://www.e-flux.com/journal/60/610
34/the-neuroplastic-dilemma-consciousn
ess-and-evolution/. “General Intellect” is
a key concept taken from Marx’s
Grundrisse, in the passage “Fragment
on Machines,” and is used to indicate the
coming together of technological
expertise and social intellect. Terranova
also draws on this concept when she
argues that the evolution of machinery
also unleashes productive powers, as
referenced in Chapter 4, “Data Capture”.

38. Franco “Bifo” Berardi, Precarious
Rhapsody: Semiocapitalism and the
Pathologies of the Post-Alpha
Generation (London: Minor
Compositions, 2009), 9. For more on the
politics of decision-making, see Luciana
Parisi’s “Reprogramming Decisionism,”
e-flux #85 (October 2017), https://ww
w.e-flux.com/journal/85/155472/reprog
ramming-decisionism/.

39. In N. Katherine Hayles’ My Mother Was
a Computer , she charts how, during the
1930s and 1940s, mainly women were
employed to do calculations who were
referred to as computers. N. Katherine
Hayles, My Mother Was a Computer
(Chicago: University of Chicago Press,
2005). Hayles takes her title from a
chapter in the book Technologies of the
Gendered Body by Anne Balsamo,
whose mother was one of these
computers.

40. Maria Puig de la Bellacasa, “Matters of
Care in Technoscience: Assembling
Neglected Things,” in Social Studies of
Science 41, no.1 (2010), 99.

41. Based on rule-based diastic techniques,
each motto assistant writes automatically
according to a sequence of characters in a
word to form sentences. All the words and
sentences are based on the seed text
“Not for Self, but for All” that was found in
the heart of the new development of
King’s Cross in London, an area in which
many queer spaces have been closed
down with the replacement of tech
companies and start-ups. In summary,
Recurrent Queer Imaginaries “is a call
to reclaim queer spaces from corporate
neocolonial imaginations, operational
injustices and reimagine them differently
for all, as a commitment to queer
liberation.” See an example of a
generated motto from Recurrent Queer
Imaginaries, in video documentation: htt
ps://digital-power.siggraph.org/piece/r
ecurrent-queer-imaginaries/.

42. The School for Poetic Computation, an
artist-run school in New York that was
founded in 2013, explores the
intersections of code, design, hardware
and theory — focusing especially on
artistic intervention, see:
https://sfpc.io/.

43. See Digital Love Languages ♡ Codes
of Affirmation, http://lovelanguages.m
elaniehoff.com/syllabus/.

44. Noah Wardrip-Fruin, “Christopher
Strachey: The First Digital Artist?,” Grand
Text Auto , School of Engineering,
University of California Santa Cruz (August
1, 2005).

45. Jacob Gaboury, “A Queer History of
Computing,” Rhizome (April 9, 2013). We
return to the issue of Turing’s sexuality in
Chapter 7, “Vocable Code”.

46. David Link’s LoveLetters_1.0:
MUC=Resurrection was first exhibited
in 2009, and was part of dOCUMENTA(13),
Kassel, in 2012. Detailed description and
documentation can be found at http://w
ww.alpha60.de/art/love_letters/. Also
see Geoff Cox, “Introduction” to David
Link, Das Herz der Maschine ,
dOCUMENTA (13): 100 Notes - 100
Thoughts, 100 Notizen - 100 Gedanken #
037 (Berlin: Hatje Cantz, 2012).

47. Lucy Suchman, Human-Machine
Reconfigurations: Plans and Situated
Actions (Cambridge: Cambridge
University Press, 2007), 217-220.

48. See the web-based step by step running
of the Langton’s Ant implemented by
Barend Köbben in 2014, https://kartowe
b.itc.nl/kobben/D3tests/LangstonsAnt/.

https://doi.org/10.1016/0167-2789(86)90237-X
https://gitlab.com/siusoon/Aesthetic_Programming_Book/-/blob/master/public/p5_SampleCode/ch5_AutoGenerator/sketch.js
https://www.random.org/randomness/
https://doi.org/10.1002/cplx.1042
https://processing.org/tutorials/2darray/
https://www.youtube.com/watch?v=OTNpiLUSiB4
https://vimeo.com/26594644
https://www.conwaylife.com/
https://web.archive.org/web/20181007111016/
http://web.stanford.edu/~cdebs/GameOfLife/
https://andersvisti.dk/work/wuos-2019
https://www.e-flux.com/journal/60/61034/the-neuroplastic-dilemma-consciousness-and-evolution/
https://www.e-flux.com/journal/85/155472/reprogramming-decisionism/
https://digital-power.siggraph.org/piece/recurrent-queer-imaginaries/
https://sfpc.io/
http://lovelanguages.melaniehoff.com/syllabus/
http://www.alpha60.de/art/love_letters/
https://kartoweb.itc.nl/kobben/D3tests/LangstonsAnt/

6. Object abstraction

143

6. Object abstraction

6. Object abstraction

setup()

MiniX:
Games with objects

Required reading

start() While()

Exercise in class:
Decode

Source code

classObjects Class-Object creation

Exercise in class Further notes

Notes

Further reading

145

146

148

149

153

154

158

158

159

160

162

163

163

164

Contents

– setup()

– start()

– Exercise in class (Decode)

– Source code

– Class

– Objects

– Class-Object creation

– Exercise in class

– Further notes

– While()

– MiniX: Games with objects

– Required reading

– Further reading

– Notes

6. Object abstraction

145

setup()

In programming an object is a key concept, but it is also more generally understood as a
thing with properties that can be identified in relation to the term subject. Put simply, and
following philosophical conventions, a subject is an observer (we might say programmer)
and an object is a thing outside of this, something observed (say a program). In this chapter
we will learn to further manipulate objects and understand their complexity in line with
people who think we need to put more emphasis on non-human things so we can better
understand how objects exist and interact, both with other objects, but also with subjects.

In the preceding chapters we worked with different objects such as ellipses, rectangles, and
polygons. You can apply different attributes to these objects, such as color, size, and
position, and — additionally — objects can exhibit certain behaviors such as various
transformational and interactive features (see Chapters 3, “Infinite loops,” and Chapter 4,
“Data capture”). These geometric objects use built-in p5.js functions as a set of pre-defined
parameters and attributes. In this chapter, we will work on constructing our own objects,
attributes, and behaviors to represent aspects of the real world. There is a process of
abstraction here, because physical objects need to be translated into the idea of an object,
and in doing so, certain details and contextual information are inevitably left out. We will
return to this issue later.

Abstraction is one of the key concepts of “Object-Oriented Programming” (OOP), a paradigm
of programming in which programs are organized around data, or objects, rather than
functions and logic. 1 The main goal is to handle an object’s complexity by abstracting
certain details and presenting a concrete model. Beatrice Fazi and Matthew Fuller have
outlined the wider significance of this and the relations between concrete and abstracted
computation: “Computation not only abstracts from the world in order to model and
represent it; through such abstractions, it also partakes in it.” 2 If we recall the previous
chapters and the many examples of data capture, and gamification, it becomes clear that
computation can shape certain behaviors and actions. In other words, objects in OOP are not
only about negotiating with the real world as a form of realism and representation, nor about
the functions and logic that compose the objects, but the wider relations and “interactions
between and with the computational.” 3

Indeed, abstraction exists in many different layers and at many different scales of
computing. At the lowest level of abstraction, the flow of information is stored, processed,
and represented in the form of binary (base 2 number system) numbers — 0s and 1s. 4 In
other words, the way we understand all media formats (whether texts, images, video or
sound) is quite different from how a computer understands them as data, or — more
precisely — as binary numbers. 5 In this way, we can move from low-level abstraction in the
form of machine code and the switching of electric circuits to high-levels of abstraction such
as graphical user interfaces or the high-level programming language p5.js that we use in the
book which “allows the production of computer-enabled human-readable code.” 6

Recognizing the various levels of abstraction is important to understanding that the specific
details and processes of how a computer actually works are largely hidden from view and/or
substituted by desktop metaphors (e.g. deleting a file by throwing it in the “bin”). Naturally,

Aesthetic Programming

146

the reduction in complexity is useful for a number of reasons including accessibility, but we
also need to bear in mind that there is more at stake here. In learning to program, even at
the higher level, we engage in the politics of this movement between abstract and concrete
reality which is never a neutral process. 7 More specifically, in this chapter, we will focus on
object abstraction (an approach in OOP) to think conceptually about how computational
objects model the world, and what this suggests in terms of an understanding of hidden
layers of operation and meaning.

start()

Object abstraction in computing is about representation. Certain attributes and relations are
abstracted from the real world, whilst simultaneously leaving details and contexts out. Let’s
imagine a person as an object (rather than a subject) and consider which properties and
behaviors that person might have. We use the name “class” to give an overview of the
object’s properties and behaviors.

For example:

Properties: A person with the name Winnie, has black hair, wears glasses and their height is
164 cm. Their favorite color is black and their favorite food is tofu.

Behavior: A person can run from location A (home) to location B (university).

From the above, we can construct a pseudo class that we can use to create another object
with the following properties and behaviors:

PERSON

Name, HairColor, withGlasses, Height, FavoriteColor, FavoriteFood, FromLocation,
ToLocation

run()

6. Object abstraction

147

In the same token, we can “reuse” the same properties and behavior to create another
“object instance” with the corresponding data values:

OBJECT INSTANCE 1 OBJECT INSTANCE 2

Name = Winnie Name = Geoff

HairColor = Black HairColor = Brown

withGlasses = Yes withGlasses = Yes

Height = 164 cm Height = 183 cm

FavoriteColor = Black favoriteColor = Green

FavoriteFood = Tofu FavoriteFood = Avocado

FromLocation = Home FromLocation = University

ToLocation = University ToLocation = Home

run() run()

Examining the pseudo object reveals how abstraction takes place in computation resulting in
“computerized material,” in which we only select properties and behaviors that we think are
important to be represented in a program, and ignore others. This is a way of modeling
physical phenomena and simulating the behaviors of real, or imaginary entities. 8 But
Crutzen and Kotkamp argue that OOP is based on “illusions of objectivity and neutrality of
representation,” in which “[a]bstractions are simplified descriptions with a limited number of
accepted properties. They reply on the suppression of a lot of other aspects of the world.” 9
The understanding is that objects in the real world are highly complex and nonlinear, such
abstracting and translating processes involve decision making to prioritize generalization
while less attention is paid on differences.

After the above example of modeling a person-object, we now move to another example,
tofu, which informs the sample code for this chapter. The inspiration is Tofu Go! (2018), a
game developed and designed by Francis Lam. 10 Tofu, or bean curd, is a popular food
derived from soya beans and originated in China two-thousand years ago. Soaking, then
grinding soya beans, then filtering out the particulate matter results in soya milk, that
contains a stable emulsion of oil, water, and protein. Then a coagulant is added after which
the solidified milk is pressed into solid white blocks of varying softness called tofu. It is an
important food product specifically in Asia, not only because of its high protein content, but
also as a cultural symbol.

https://www.dbdbking.com/Tofu-Go

Aesthetic Programming

148

When tofu becomes a computational object — as in Tofu Go! — abstraction is required to
capture the complexity of processes, and relations, and to represent what are thought to be
essential or desirable properties, and behaviors. In the game, tofu is designed as a simple,
three-dimensional white cube with a range of emotive expressions, and the ability to move,
and jump. Of course real tofu cannot behave this way, but you can imagine how objects
perform if you have programmed your own game, and if you love tofu as Lam does: “Tofu
Go! is a game dedicated to my love for tofu and hotpot,” as he puts it. 11 The aim of the
game is to save the tofu from being captured by the chopsticks.

Figure 6.1: A screenshot of the game ToFu Go!, developed and designed by
Francis Lam. Courtesy of the designer.

Below we will introduce the sample code Eating tofu , a simple game inspired by the following:
ToFu Go! (available for free download), the prior project Multi as introduced in Chapter 2,
“Variable geometry,” and the popular Japanese eating game Pac-Man. 12 The remaining
parts unfold the computational logic and modeling required to understand the basics of OOP.

Exercise in class (Decode)

Figure 6.2: A screenshot of the Eating tofu game

RunMe https://aesthetic-
programming.gitlab.io/book/p5_SampleCode/ch6_ObjectAbstraction/

https://aesthetic-programming.gitlab.io/book/p5_SampleCode/ch6_ObjectAbstraction/

6. Object abstraction

149

Speculation

Based on what you experience on the screen, describe:

– What are the instructions/rules for playing the game?
– Tofu is constructed as a class, and each tofu is an object instance. Can you

describe the properties of the tofu and their behaviors?
– Can you describe the algorithmic procedures and sequences of the game using

the following components: tofu, Pacman, keypress events, movements?

Further questions to think about:

– There is a continous having new tofus moving from right to left, what are the
conditions to trigger new tofu?

– How do you check if Pacman has eaten the tofu?
– Under which conditions will the game end?

MAPPING with the source code

– Map some of the findings/features from the speculation that you have done with
the source code. Which block of code relates to your findings?

– Can you identify the part/block of code that responds to the elements you
speculated about above?

– Identify the syntaxes and functions that you are unfamiliar with, and check out the
p5.js reference site: https://p5js.org/reference/

Source code

The source code is divided in two, one part with all the core functions, “sketch.js,” and
another “Tofu.js” that specifies the class/object relationship. Sometimes subdividing the
program into various functions and files can help provide clarity. You can understand an
additional JS file is just a continuation of your core sketch, therefore you don’t have to
repeatedly write function setup() or function draw() in the new files (when your programs
become longer, and more complex, you might have more than two JS files to hold the
program together). To enable the two JS files in a program, you need to add the following
into the index.html file:

<script language="javascript" type="text/javascript" src="sketch.js">1

</script>2

<script language="javascript" type="text/javascript" src="Tofu.js">3

</script>4

https://p5js.org/reference/

Aesthetic Programming

150

sketch.js:

let pacmanSize = {1

 w:86,2

 h:893

};4

let pacman;5

let pacPosY;6

let mini_height;7

let min_tofu = 5; //min tofu on the screen8

let tofu = [];9

let score =0, lose = 0;10

let keyColor = 45;11

12

function preload(){13

 pacman = loadImage("data/pacman.gif");14

}15

16

function setup() {17

 createCanvas(windowWidth, windowHeight);18

 pacPosY = height/2;19

 mini_height = height/2;20

}21

function draw() {22

 background(240);23

 fill(keyColor, 255);24

 rect(0, height/1.5, width, 1);25

 displayScore();26

 checkTofuNum(); //available tofu27

 showTofu();28

 image(pacman, 0, pacPosY, pacmanSize.w, pacmanSize.h);29

 checkEating(); //scoring30

 checkResult();31

}32

33

function checkTofuNum() {34

 if (tofu.length < min_tofu) {35

 tofu.push(new Tofu());36

 }37

}38

39

function showTofu(){40

 for (let i = 0; i <tofu.length; i++) {41

 tofu[i].move();42

 tofu[i].show();43

 }44

}45

46

6. Object abstraction

151

function checkEating() {47

 //calculate the distance between each tofu48

 for (let i = 0; i < tofu.length; i++) {49

 let d = int(50

 dist(pacmanSize.w/2, pacPosY+pacmanSize.h/2,51

 tofu[i].pos.x, tofu[i].pos.y)52

);53

 if (d < pacmanSize.w/2.5) { //close enough as if eating the tofu54

 score++;55

 tofu.splice(i,1);56

 }else if (tofu[i].pos.x < 3) { //pacman missed the tofu57

 lose++;58

 tofu.splice(i,1);59

 }60

 }61

}62

63

function displayScore() {64

 fill(keyColor, 160);65

 textSize(17);66

 text('You have eaten '+ score + " tofu(s)", 10, height/1.4);67

 text('You have wasted ' + lose + " tofu(s)", 10, height/1.4+20);68

 fill(keyColor,255);69

 text('PRESS the ARROW UP & DOWN key to eat the ToFu', 10, height/1.4+40);70

}71

function checkResult() {72

 if (lose > score && lose > 2) {73

 fill(keyColor, 255);74

 textSize(26);75

 text("Too Much WASTAGE...GAME OVER", width/3, height/1.4);76

 noLoop();77

 }78

}79

80

function keyPressed() {81

 if (keyCode === UP_ARROW) {82

 pacPosY-=50;83

 } else if (keyCode === DOWN_ARROW) {84

 pacPosY+=50;85

 }86

 //reset if the pacman moves out of range87

 if (pacPosY > mini_height) {88

 pacPosY = mini_height;89

 } else if (pacPosY < 0 - pacmanSize.w/2) {90

 pacPosY = 0;91

 }92

}93

Aesthetic Programming

152

Tofu.js:

/*create a class: template/blueprint of objects with properties and behaviors*/1

class Tofu {2

 constructor() { //initalize the objects3

 this.speed = floor(random(3, 6));4

 //check this feature: https://p5js.org/reference/#/p5/createVector5

 this.pos = new createVector(width+5, random(12, height/1.7));6

 this.size = floor(random(15, 35));7

 //rotate in clockwise for +ve no8

 this.tofu_rotate = random(0, PI/20);9

 this.emoji_size = this.size/1.8;10

 }11

 move() { //moving behaviors12

 this.pos.x-=this.speed; //i.e, this.pos.x = this.pos.x - this.speed;13

 }14

 show() { //show tofu as a cube15

 push()16

 translate(this.pos.x, this.pos.y);17

 rotate(this.tofu_rotate);18

 noStroke();19

 fill(130, 120);//shadow20

 rect(0, this.size, this.size, 1);21

 fill(253); //front plane22

 rect(0, 0, this.size, this.size);23

 fill(150); //top24

 beginShape();25

 vertex(0, 0);26

 vertex(0-this.size/4, 0-this.size/4);27

 vertex(0+this.size/1.5, 0-this.size/4); //no special hair style28

 vertex(0+this.size, 0);29

 endShape(CLOSE);30

 fill(220);//side31

 beginShape();32

 vertex(0, 0);33

 vertex(0-this.size/4, 0-this.size/4);34

 vertex(0-this.size/4, 0+this.size/1.5);35

 vertex(0,0+this.size);36

 endShape(CLOSE);37

 fill(80); //face38

 textStyle(BOLD);39

 textSize(this.emoji_size);40

 text('*', 0+this.size/6, 0+this.size/1.5);41

 text('-', 0+this.size/1.7, 0+this.size/1.9);42

 text('。', 0+this.size/3, 0+this.size/1.2);43

 pop();44

 }45

}46

6. Object abstraction

153

Class

To construct objects in OOP it is important to have a blueprint. A class specifies the structure
of its objects’ attributes and the possible behaviors/actions of these objects. Class can
therefore be understood as a template for, and blueprint of, things.

Similar to the template that we had for a person-object earlier, we have the following:

TOFU

speed, xpos, ypos, size, tofu_rotate, emoji_size

move(), show()

You may refer to Tofu.js for how the Tofu class is constructed.

(Step 1) Naming: name your class

In the sample code above, we have “Tofu” as the class name and “tofu” as the name for the
object instances (it is a common approach in programming to use the same name for both a
class and an object instance, but the class name will be capitalized). The things within a
class describes what it means to be the object, which is defined by what the properties are,
the data values, and behaviors and functionalities to realize the form. In computer science,
this is called “encapsulation.”

(Step 2) Properties: What are the (varying) attributes/properties of tofu?

class Tofu {1

2

}3

/*create a class: template/blueprint of objects with properties and behaviors*/1

class Tofu {2

 constructor() { //initalize the objects3

 this.speed = floor(random(3, 6));4

 //check this feature: https://p5js.org/reference/#/p5/createVector5

 this.pos = new createVector(width+5, random(12, height/1.7));6

 this.size = floor(random(15, 35));7

 //rotate in clockwise for +ve no8

 this.tofu_rotate = random(0, PI/20);9

 this.emoji_size = this.size/1.8;10

 }11

 //something more here12

}13

Aesthetic Programming

154

The above prepares object construction. There is a function called “constructor” to initialize a
(tofu) object with the following attributes which takes the form of a list of variables that
indicate the properties of speed, position, size of the shape, rotating angle and size of the
emoji expression. All these properties are defined with the keyword this, which refers to the
current object instance during the execution of the program, e.g. this.speed =
floor(random(3, 6));. It can be translated roughly as: when the object instance tofu is
created, that particular tofu’s speed value will be a random integer between 3 and 5.

For the other variable, this.pos, we use the function new createVector to create the new p5
vector which contains the x and y components. With the createVector() function, we can then
use pos.x and pos.y to specify the x and y coordinates of a tofu:

this.pos = new createVector(x, y); => this.pos.x and this.pos.y

(Step 3) Behaviors: What are the tofu’s behaviors?

In programming, we use the term “methods” to describe object behaviors. The two methods
move() and show() are the functions that can be used by each object instance. Each object
can move differently with variations of speed, size, etc.

This is often a difficult concept for beginners because to display the object is also considered
as a method/behavior in OOP. The object is created in the background, but you need to
decide where and how to display the object, and in what form.

Objects

We will now illustrate how to create an object instance, which is coded in the file sketch.js.

(Step 4) Object creation and usage: After the basic setup of the class structure, the next
step is to create a tofu object that can be displayed on a screen.

class Tofu {1

 constructor() { //initialize the objects2

 // something here3

 }4

 move() { //moving behaviors5

 this.pos.x-=this.speed; //i.e, this.pos.x = this.pos.x - this.speed;6

 }7

 show() {8

 //show tofu as a cube by using vertex9

 //show the emoji on the one of the surfaces10

 }11

}12

6. Object abstraction

155

The above shows that the program has the minimum amount of tofu on screen (with the
variable min_tofu). Tofu is created through the checkTofuNum() (see Lines 6 & 10), a custom-
function with the conditional statement to check if the amount of tofu objects meets the
minimum value. The function push() creates a “new” object instance using the Tofu class
(tofu.push(new Tofu());). Therefore, all the object instances have the same properties and
methods, and the code can be reused to create similar objects.

Objects are like arrays, and start with index 0, e.g. tofu[0], and if you push for more, the
program will create and add one to the index i.e. tofu[1]. Using the syntax tofu.length() will
result in the number of active objects. We can then use a for-loop to cycle through all the
tofu objects, moving, and displaying them on the canvas (using the class methods move()
and show() defined above).

This small snippets of code shows that objects can be duplicated and are relatively easy to
manage, which is one of OOP’s advantages.

(Step 5) Trigger point and logics: Consider this holistically

The basic structure of the class-object relationship has been created at this point, but
several additional parts are needed to complete the whole game program, such as
implementing the game rules:

let min_tofu = 5; //min tofu on the screen1

let tofu = [];2

3

function draw() {4

 //something here5

 checkTofuNum(); //available tofu6

 showTofu();7

}8

9

function checkTofuNum() {10

 if (tofu.length < min_tofu) {11

 tofu.push(new Tofu());12

 }13

}14

15

function showTofu() {16

 //something here17

 for (let i = 0; i <tofu.length; i++) {18

 tofu[i].move();19

 tofu[i].show();20

 }21

}22

Aesthetic Programming

156

1. Pacman placement and how it interacts with the tofu objects.

2. Check if each of the tofu object has been eaten or wasted.

3. If the game has ended, what are the conditions for this, and consequences?

Since the program runs continuously with logic implemented in the draw() function, this
means tofu(s) will continuously be created, moved and displayed. This necessitates breaking
a bigger task down into smaller tasks.

Deleting tofu

One of the important things to note is that once an object is created, it will stay in the
program even it is no longer visible on a screen, until you delete it. In this game, tofu
disappear from the screen in two ways:

1. A tofu object is uneaten and moves beyond the confines of the screen.

2. A tofu object is eaten.

Although the tofu may disappear from the screen, we need to delete the objects using code
or otherwise they will continue to move off screen (that is, unless you may want to reuse
disappeared tofu, but for this sample code we demonstrate how to delete).

Since we use the syntax tofu.length to check the minimum number of tofu objects, the
deletion becomes essential so that the screen can check on and then adjust the number of
tofu. We have push() for adding new objects, and we have splice() for deleting them.

function draw() {1

 checkEating(); //scoring2

}3

4

function checkEating() {5

 //calculate the distance between each tofu6

 for (let i = 0; i < tofu.length; i++) {7

 let d = int(8

 dist(pacmanSize.w/2, pacPosY+pacmanSize.h/2,9

 tofu[i].pos.x, tofu[i].pos.y)10

);11

 if (d < pacmanSize.w/2.5) { //close enough as if eating the tofu12

 score++;13

 tofu.splice(i, 1);14

 }else if (tofu[i].pos.x < 3) { //pacman missed the tofu15

 lose++;16

 tofu.splice(i, 1);17

 }18

 }19

}20

6. Object abstraction

157

checkEating() is a customized function for deleting tofu under certain conditions, and
consequently leading to the calculation of the scores, i.e. the number of tofu(s) eaten or
wasted by Pacman (see Line 5).

We start with a for-loop (see Line 7) to cycle through all the tofu object instances. The first
step is to check if Pacman has eaten any of them. This means we need to think about what it
means to “be eaten” in a computational sense. The program continuously checks the
distance between each tofu and Pacman. The dist(); function (see Line 9-10) takes four
parameters to calculate the distance between two points (x1, y1, x2, y2). x1 and y1 mark
Pacman’s position (the center point) and x2, y2, each tofu’s position. If the calculated
distance is less than half of Pacman’s image width, this means that the Pacman is closed
enough to give an illusion of the tofu is being eaten, then the variable score increases by one,
and the object concerned will be deleted (tofu.splice(i,1);).

Secondly, any specific tofu objects that reach the end of the canvas will no longer be used.
Objects with the x position less than the value three (tofu[i].pos.x < 3) are removed. The
two steps’ sequence matters because we need to make sure deleted tofu is missed
by Pacman.

Up to now, the function checkTofuNum() makes more sense to reflect the numbers of active
objects, i.e. the number of visible objects on screen, and this will create new object instances
if the minimum numbers are not met. This is implemented in the draw() function and as a
result, new objects are continuously moved, and new object instances are
continuously created.

Interacting with the key

To control Pacman and play the game, users use the UP_ARROW and the DOWN_ARROW to
control its position. A boundary has been set for the maximum and minimum height of
Pacman that can move by implementing a conditional structure to make sure it is able to eat
the tofu from different y positions.

function keyPressed() {1

 if (keyCode === UP_ARROW) {2

 pacPosY-=30;3

 } else if (keyCode === DOWN_ARROW) {4

 pacPosY+=30;5

 }6

 //reset if Pacman moves out of range7

 if (pacPosY > mini_height) {8

 pacPosY = mini_height;9

 } else if (pacPosY < 0 - pacmanSize.w/2) {10

 pacPosY = 0;11

 }12

}13

Aesthetic Programming

158

For teaching purposes, we have created a much simplier version 13 for the representation of
tofu objects (instead of having emotive expression and cube-like rectangles we simply use
simple squares rect() in a two-dimensional form) aiming to walkthrough the class-object
creation in a live coding environment and follow the first four steps as guidelines.

Class-Object creation

Implementing a class-object in your program needs some planning. Objects consist of
attributes/properties and actions/behaviors, and all these hold and manage data so it can
be used and operations can be performed.

– (Step 1) Naming: Name your class.
– (Step 2) Properties: What are tofu’s attributes/properties?
– (Step 3) Behaviors: What are tofu’s actions/behaviors?
– (Step 4) Object creation & usage: After setting up the class structure, the next step is is

to create a tofu object that can be displayed on screen.
– (Step 5) Trigger point & logic: consider holistically

By no means do the steps need to be exactly as listed. Of course, you could think about a
program or game in a holistic way from the beginning, and come up with the various object
instances later. As such, the steps are just a suggestion, particularly in the case of beginners
encountering class-object creation for the first time. Our teaching experience has shown us
that students generally find it difficult to implement their own objects, and we hope it is
useful to provide some steps, keywords, and questions to facilitate the crafting of objects.

Exercise in class

1. Tinkering

– Modify the different values to understand the function/syntax of the Eating
tofu game.

2. Discussion in groups:

– Identify a game you are familiar with, and describe the characters/objects using
the class, and object concepts, and vocabulary. Can you identify the classes and
objects within the chosen example?

– Given that the creation of objects requires the concept of abstraction, and in line
with some of the introductory ideas for this chapter; can you use the sample code
or your game as an example to think through some of the political implications of
class/object abstraction? How do objects interact with the world, and how do

6. Object abstraction

159

worldviews and ideologies built into objects’ properties and behaviors? Does the
fact that this is a game allow for further reflection on the way everyday activities
(such as enjoying tofu) become object-oriented?

Further notes

function preload(){}: In this game we have used an animated gif, i.e. Pacman that can
be controlled by pressing certain key codes. To have the image drawn on the canvas, you
need to use the function loadImage() to load the image file before the program runs setup()
and draw().

image(): To display an image file on the p5.js canvas, the function image() is used and it
takes parameters: which image (the file and its computer’s location), x position (where you
want to display in terms of the x axis), y position (where you want to display in terms of the
y axis), the width of an image and the height of it (the size that you want to display as you
might want to resize the original image). We have also used this function to display the
captured video feeds as images in Chapter 4, “Data capture.”

The tofu’s shape: As introduced in Chapter 2, “Variable geometry,” we have reused the related
syntax such as rect(), vertex(), beingShape() and endShape(). We will now also use typographic
characters for the emotive expression by using the text() and textSize() functions.

The game logic: The program is a typical game with an end result. The functions
checkEating() and checkResult() are used to count how many tofus have been eaten (using
the variable score) and how many tofus have not been eaten, and are regarded as wastage
(with the variable lose). These two variables are compared in the end. A “game over”
message will be shown if the nmber of tofus wasted is higher than the number of tofus eaten
(lose > score), and (by using the symbol/operator && within the conditional statement: if
(lose > score && lose > 2) {}), the game provides additional chances to continue even
though the tofus are wasted for two times “and” none have been eaten, for example lose =
2 and score = 0. noLoop() is used to stop the program from looping, and as such the canvas
is frozen as a game over scene.

Arithmetic operators: There is new arithmetic syntax beyond simply =, +, -, *, /, such as += in
tableX+=texture_width; and edgeX+=texture_width;. See the list below:

OPERATOR USE CASE SAME AS

+= x+=y x=x+y

-= x-=y x=x-y

Aesthetic Programming

160

While()

Examining the tofu example reveals that object-oriented programming is highly organized
and concrete even though objects are abstractions. It’s also worth reiterating that OOP is
designed to reflect the way the world is organized and imagined, at least from the computer
programmers’ perspective. It provides an understanding of the ways in which relatively
independent objects operate through their relation to other objects.

Academic and video game designer Ian Bogost refers to these interacting processes as “unit
operations,” which are “characterized by their increased compression of representation, a
tendency common over the course of the twentieth century, from structuralist anthropology
to computation. I use this term to refer to processes in the general sense, for example, the
coupling of a cultural process and its computational representation.” 14 Taking his cue from
a combination of literary theory and computing, he argues that cultural phenomena (not just
computer games) can be read as a configurative system of discrete, interlocking units of
meaning. There are numerous implications here. As we have seen in this chapter, each object
includes both data and functions — and in addition — programmers can create relationships
between different objects, and objects can further inherit characteristics from other objects.

As mentioned above, this object-oriented approach closely approximates the ways that
many other disciplines also understand discrete objects and their interactions. The most
obvious connection here, not least in its naming, is with “object-oriented ontology” (OOO), a
philosophical “speculation” on how objects exist, and interact. But we should be wary of
making too-easy a connection here between OOP and OOO (made even more confusing by
the earlier descriptor OOP, object-oriented philosophy). In brief, OOO rejects the idea that
objects come into being through the perception of the human subject, and promotes that
idea that objects, whether human or nonhuman, are autonomous. 15

Again, a book like ours is not the place for a deep discussion of philosophy, but it should be
noted that OOO is a Heidegger-influenced critique of Kantian metaphysics, and a rejection of
the privileging of human existence over the existence of nonhuman objects. The connection
to Heidegger’s ideas is made explicit in Harman’s Tool-Being: Heidegger and the
Metaphysics of Objects that builds on the oft-cited distinction between “present-at-hand”
and the “ready-to-hand.” 16 (The former refers to our theoretical apprehension of a world
made up of objects, and the latter describes our practical relation to things that are handy or
useful.) The claim is that practice precedes theory, and that the ready-to-hand of human
practice is prior to the present-at-hand, which Harman extends to the practice of objects
themselves, to articulate his “ontology of objects.” It is perhaps useful to think of
programming in this way, as a tool-based practice where the objects themselves exist
independently of human activity and, as Harman would put it, are not ontologically
exhausted by their relations with humans or other objects.

One of the perceived difficulties is how to incorporate politics into this. Jane Bennett’s
Vibrant Matter is an example of an attempt to take a political position on the more-than-
human assemblages that question human (more often than not, male) sovereignty over the
world, even including the agency of food in the chapter “Edible Matter.” 17 The aim, she
writes “is to articulate a vibrant materiality that runs alongside and inside humans to see how

6. Object abstraction

161

analyses of political events might change if we gave the force of things more due.” 18 Here,
she partly draws on the work of Bruno Latour, and his idea of “actants,” a phrase which
emphasizes a coming together — assemblage — of complex, diverse, interlinking
agencies. 19 Objects have become things again, as he puts it.

If we extend this line of argument to operating systems, and society as Latour does, then
questions arise as to how best facilitate the production of objects, and their actions. Free,
open source software production, for instance, is based on certain principles of distribution
and the mutual exchange of its objects, similar to the interactions of objects in programming
environments. The way that objects operate in computational and cultural decision-making
and representation models is political. Matthew Fuller and Andrew Goffey suggest that this
object-oriented modeling of the world is a social-technical practice, “compressing and
abstracting relations operative at different scales of reality, composing new forms of
agency.” 20 In their opinion, this agency operates across the computational and material
arrangement of everyday encounters.

With the abstraction of relations, there is an interplay between abstract and concrete reality.
The classifications abstract and concrete were taken up by Marx in his critique of capitalist
working conditions to distinguish between abstract labor and living labor. Whereas abstract
labor is labor-power exerted producing commodities that uphold capitalism, living labor is
the capacity to work. This abstraction is the process by which labor is “subsumed” under
capitalism (somewhat like data capture). For brevity, what we want to emphasize more
firmly is that knowledge of these ideas, and of programming, is subject to the movement
between concrete and abstract states.

Let’s explain using some more Marxism: we might assume that there is a real and concrete
thing in the world, that once put under pressure by critique, reveals itself to be false, an
abstraction. The relation between the concrete and abstract in Marx thus is a dialectical
movement between states in order to reduce the abstractions and arrive at a reality that
represents a rich totality of relations (such as class struggle). What Marx refers to as
abstract determinations leads towards a reproduction of the concrete by way of critical
thinking, which itself is grounded in reality and lived conditions. The politics of this (distinct
from Hegel’s idealism) is that abstractions are reliant on the concrete, and return to it. This
should be repeatable. His example is the abstraction of exchange value (through abstract
labor), as it can only exist in a dialectical relationship with the concrete social relations found
in society. 21

If we apply this to a computational object and its abstraction (the identification of properties
and methods), it would only makes sense in terms of its wider relations, and recognition of
its conditions of operation (program, the programmer’s labor, operating system,
infrastructure, etc.), and only then if there is a point to expose these conditions so they can
be improved, not least with better abstractions. In his way, computational objects allow for a
different perspective on lived conditions in this way and how we perceive the world.
Worldviews can often be unethical, and we only need to think of game-worlds to see poor
examples of racial and gendered abstraction that expose some of the assumptions of the
world, and what properties and methods that these characters are being defined. Therein lies

Aesthetic Programming

162

part of the motivation for this chapter, to understand that objects are designed with certain
assumptions, biases and worldviews, and to make better object abstractions and ones with a
clearer sense of purpose.

MiniX: Games with objects

Objective:

– To implement a class-based, object-oriented sketch via abstracting and designing
objects’ properties and methods.

– To reflect upon object abstraction under the lived conditions of digital culture.

For additional inspiration

– “p5.js - Array Objects,” https://p5js.org/examples/arrays-array-objects.html.
– daily coding by Tomokazu Nagayama (2020),

https://twitter.com/nagayama/status/1246086230497845250?s=19, with
source code:
https://github.com/nagayama/dailycoding/blob/master/2020/04/03.html.

– Eat Food Not Bombs (with source code) by Benjamin Grosser (2019),
https://editor.p5js.org/bengrosser/full/Ml3Nj2X6w.

– lifeline by Junichiro Horikawa (2020),
https://www.openprocessing.org/sketch/891619.

– “p5.js coding challenge #31: Flappy Bird” by Daniel Shiffman,
https://www.youtube.com/watch?v=cXgA1d_E-jY.

– “p5.js coding challenge #3: The Snake Game” by Daniel Shiffman,
https://www.youtube.com/watch?v=AaGK-fj-BAM.

Tasks (RunMe)

Think of a simple game that you want to design and implement. Which objects are
required? What are their properties and methods? At the most basic level, you need to
use a class-based object-oriented approach to design your game components. These
can exhibit certain behaviors which means you need to at least have a class, a
constructor, and a method.

Once you understand objects and classes, you can continue to work on a mini game
implementing interaction with objects. Start with something simple in terms of
thinking or reappropriating the rules, interactions and checking steps. The Eating tofu
sample code and other games that mentioned above are useful for practicing building
the logics and combining smaller steps.

Questions to think about (ReadMe):

– Describe how does/do your game/game objects work?

https://p5js.org/examples/arrays-array-objects.html
https://twitter.com/nagayama/status/1246086230497845250?s=19
https://github.com/nagayama/dailycoding/blob/master/2020/04/03.html
https://editor.p5js.org/bengrosser/full/Ml3Nj2X6w
https://www.openprocessing.org/sketch/891619
https://www.youtube.com/watch?v=cXgA1d_E-jY
https://www.youtube.com/watch?v=AaGK-fj-BAM

6. Object abstraction

163

– Describe how you program the objects and their related attributes, and the
methods in your game.

– Draw upon the assigned reading, what are the characteristics of object-oriented
programming and the wider implications of abstraction?

– Connect your game project to a wider cultural context, and think of an example
to describe how complex details and operations are being “abstracted”?

Required reading

– Matthew Fuller and Andrew Goffey, “The Obscure Objects of Object Orientation,” in Matthew
Fuller, How to be a Geek: Essays on the Culture of Software (Cambridge:
Polity, 2017).

– “p5.js examples - Objects,” https://p5js.org/examples/objects-objects.html.

– “p5.js examples - Array of Objects,” https://p5js.org/examples/objects-array-of-
objects.html.

– Daniel Shiffman, “Code! Programming with p5.js,” The Coding Train (watch: 2.3, 6.1, 6.2,
6.3, 7.1, 7.2, 7.3), https://www.youtube.com/watch?v=8j0UDiN7my4&list=PLRqwX-
V7Uu6Zy51Q-x9tMWIv9cueOFTFA.

Further reading

– Cecile Crutzen and Erna Kotkamp, “Object Orientation,” in Fuller,
ed., Software Studies , 200-207.

– Roger Y. Lee, “Object-Oriented Concepts,” in Software
Engineering: A Hands-On Approach (Springer, 2013), 17-
24, 35-37.

– Daniel Shiffman, “16.17 Inheritance in JavaScript - Topics of
JavaScript/ES6,” https://www.youtube.com/watch?
v=MfxBfRD0FVU&feature=youtu.be&fbclid=IwAR14JwOuRnCXYUIK
V7DxML3ORwPIttOPPKhqTCKehbq4EcxbtdZDXJDr4b0.

– Andrew P. Black, “Object-Oriented Programming: Some history, and
challenges for the next fifty years” (2013),
https://arxiv.org/abs/1303.0427.

https://p5js.org/examples/objects-objects.html
https://p5js.org/examples/objects-array-of-objects.html
https://www.youtube.com/watch?v=8j0UDiN7my4&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA
https://www.youtube.com/watch?v=MfxBfRD0FVU&feature=youtu.be&fbclid=IwAR14JwOuRnCXYUIKV7DxML3ORwPIttOPPKhqTCKehbq4EcxbtdZDXJDr4b0
https://arxiv.org/abs/1303.0427

Aesthetic Programming

164

Notes

1. Simula, developed in the 1960s by Ole-
Johan Dahl and Kristen Nygaard at the
Norwegian Computing Center in Oslo, is
considered to be the first object-oriented
programming language. Smalltalk, first
developed for educational use at Xerox
Corporation’s Palo Alto Research Center in
the late 1960s and released in 1972, is
cited more often. For more on the history
of object-oriented programming
languages, see Ole-Johan Dahl, “The Birth
of Object Orientation: the Simula
Languages,” Object-Orientation to
Formal Methods , Olaf Owe, Stein
Krogdahl, Tom Lyche, eds., Lecture Notes
in Computer Science 2635
(Berlin/Heidelberg: Springer, 2004), http
s://link.springer.com/chapter/10.100
7/978-3-540-39993-3_3.

2. Beatrice M. Fazi and Matthew Fuller,
“Computational Aesthetics,” in Christiane
Paul, ed., A Companion to Digital Art
(Hoboken, NJ: Wiley Blackwell, 2016), 281-
296.

3. Matthew Fuller & Andrew Goffey, “The
Obscure Objects of Object Orientation,” in
Matthew Fuller, ed., How to be a Geek:
Essays on the Culture of Software
(Cambridge: Polity, 2017).

4. Limor Fried & Federico Gomez Suarez
(n.d), “Binary & Data,” Khan Academy.
Available at https://www.khanacademy.
org/computing/computer-science/how-
computers-work2/v/khan-academy-and-
codeorg-binary-data.

5. The way a computer understands color
provides an example of numeric logic. A
range of each individual color is 0-255 with
the total of 256 possible values. Each
color (R, G and B) has 8-bit color graphics
regarding the storage of image
information in a computer’s memory. To
put this concretely, the red color is in the
form of 8-bit color graphics, then each bit
has two binary possibilities, and therefore
the number of possible values is
calculated as 2^8 which is 256.

6. As discussed in Chapter 1, “Getting
started,” concerning the usual
understanding of high-level programming
languages, Chun sharply points to the
politics of software in terms of erasure and
reusability. Higher-level programming
languages do not expose detailed
machine operations/instructions, and
hence enforce the binary seperation of
soft/hardware and forget the physicality
and concreteness of machines. The
professionalization of programming is in
part built upon the hiding of the machine.
See Wendy Hui Kyong Chun, “On Software,
or the Persistence of Visual Knowledge,”
Grey Room 18 (2005): 26–51, https://d
oi.org/10.1162/1526381043320741.

7. Cecile Crutzen, and Erna Kotkamp,
“Object Orientation,” in Fuller, ed.,
Software Studies (Cambridge, MA: MIT
Press, 2008), 202-203.

8. Ole Madsen, Birger Møller-Pedersen, and
Kirsten Nygaard, “Object-Oriented
Programming in the BETA Programming
Language,” (1993), 16-18.

9. Crutzen and Kotkamp, “Object
Orientation,” 202-203.

10. ToFu Go! is freely available on the Apple
App store for iPhone and iPad, see http
s://apps.apple.com/us/app/tofu-go/i
d441704812, and the video demonstration
https://www.youtube.com/watch?v=V9
NirY55HfU.

11. See the interview of Francis Lam in 2012
here: https://www.design-china.org/pos
t/35833433475/francis-lam.

12. The original name of the game Pac-
Man was called “PuckMan” and refers to
a popular Japanese phrase “Paku paku
taberu,” where “paku paku” simulates the
sound of a snapping mouth and taberu
means “to eat.” See Jacopo Prisco, “Pac-
Man at 40: The eating icon that changed
gaming history,” CNN, https://edition.c
nn.com/style/article/pac-man-40-anniv
ersary-history/.

13. See https://editor.p5js.org/siusoon/sk
etches/HAYWF3gv.

14. Ian Bogost, Persuasive Games: The
Expressive Power of Videogames
(Cambridge, MA: MIT Press, 2007), 8; also,
Ian Bogost, Unit Operations: An
Approach to Videogame Criticism
(Cambridge, MA: MIT Press, 2006).

15. Graham Harman, Object-Oriented
Ontology: A New Theory of
Everything (London: Pelican/Penguin,
2018).

16. Graham Harman, Tool-Being:
Heidegger and the Metaphysics of
Objects (Chicago: Open Court Publishing,
2002).

17. Jane Bennett, Vibrant Matter: A
Political Ecology of Things (Durham,
NC: Duke University Press, 2009).

18. Bennett, Vibrant Matter , viii.
19. This is a description of the “actor-

network.” See Bruno Latour,
Reassembling the Social: An
Introduction to Actor-Network-
Theory (Oxford: Oxford University Press,
2005).

20. Fuller and Goffey, “The Obscure Objects of
Object Orientation,” 21.

21. “Hitherto, philosophers have sought to
understand the world; the point, however,
is to change it.” Marx and Engels, The
Communist Manifesto (1848), https://
www.marxists.org/archive/marx/work
s/1848/communist-manifesto/.

22. splice() is a p5.js function, see https://p
5js.org/reference/#/p5/splice.

23. push() is a JavaScript function that is used
in an array to add one or more elements
to the end of an array, see: https://devel
oper.mozilla.org/en-US/docs/Web/Jav
aScript/Reference/Global_Objects/Arra
y/push.

https://link.springer.com/chapter/10.1007/978-3-540-39993-3_3
https://www.khanacademy.org/computing/computer-science/how-computers-work2/v/khan-academy-and-codeorg-binary-data
https://doi.org/10.1162/1526381043320741
https://apps.apple.com/us/app/tofu-go/id441704812
https://www.youtube.com/watch?v=V9NirY55HfU
https://www.design-china.org/post/35833433475/francis-lam
https://edition.cnn.com/style/article/pac-man-40-anniversary-history/
https://editor.p5js.org/siusoon/sketches/HAYWF3gv
https://www.marxists.org/archive/marx/works/1848/communist-manifesto/
https://p5js.org/reference/#/p5/splice
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push

7. Vocable code

165

7. Vocable code

7. Vocable code

setup()

MiniX:
E-lit

Required reading

start()

While()

Exercise in class
(Decode)

Exercise in class

Textuality

Source Code

Conditional structure

JSON

Notes

Further reading

167

168

169

171

172
173

175

178

180

181

184

185

185

186

Contents

– setup()

– start()

– Exercise in class (Decode)

– Textuality

– Type
– Conditional structure

– JSON

– Source code

– Exercise in class

– While()

– MiniX: E-lit

– Required reading

– Further reading

– Notes

7. Vocable code

167

setup()

Using the phase “Vocable Code” for this chapter’s title aims to make explicit how the act of
coding cannot simply be reducible to its functional aspects. Rather we would like to
emphasize that code mirrors the instability inherent in human language in terms of how it
expresses itself, and is interpreted. Code is both script and performance, and in this sense is
always ready to do something: it says what it will do, and does it at the same time. This
analogy to speech, or more specifically to “speech-act theory” is well established in software
studies (not least in Speaking Code) and helps us to neatly demonstrate how we can to do
things with words “and” code. 1

Indeed, if coding is somewhat like speaking, then it is also like poetry inasmuch as poems
operate performatively inasmuch as they can be read and ideally spoken aloud. 2 There are
clear similarities between the syntactic qualities of written code and the execution of code in
its performance. The parallel becomes evident if you read the source code aloud, as if it were
a poem. A good example is the philosopher Franco Bifo Berardi who read the code for the “I
Love You” virus aloud, enacting Florian Cramer’s claim that the computer virus might be
considered to be a form of poetry. 3 This example makes broader reference to artists
expressing language as found objects, including the Dadaist simultaneous poems which
consisted of texts in different languages read aloud at the same time to expose the
expressive tonality of the words as opposed to their meaning. Software is constructed from
language, and is processed with and via computational procedures consisting of source code
as symbols. 4 Code is like poetry then, inasmuch as it plays with language’s structures,
setting up temporal interplay between the “voice” that is, and the “voice” that is to come. By
connecting to human language and the voice, we stress the instability of all codes and how
particular intentions or meanings are open to misinterpretation and reinvention.

Various scholars and artists have explored these connections between speaking and coding,
not only to consider programming as an aesthetic tool for producing hybrid programming-
literary forms, but also to explore the material connections and creative tensions between
the two. 5 That speech comes from living human bodies further reminds us that coding
practices have bodies too, and that coding can only be understood in terms of wider
infrastructures, and the context of its making (or “poiesis” if you will). In this chapter we
explore this line of thinking, and the ways in which the voice of the human subject is
implicated in coding practices, and how coding itself can “voice” wider political issues,
particularly concerning sexuality. We will focus on the software artwork Vocable Code made
by Winnie Soon, as a means to engage with these technical and aesthetic qualities.

Aesthetic Programming

168

Figure 7.1: The installation of Vocable Code, detail

start()

Vocable Code is both a work of software art (software as art, not software to make art) and
a “codework” (in which the source code and critical writing operate together) to embody
“queer code.” Collecting voices and statements that complete the sentence starting with
“Queer is,” the work is composed of texts and voices that are repeated, and disrupted by
mathematical chaos, to create a dynamic artwork to explore the performativity of code,
subjectivity and language. Behind the web interface, the code itself is a mixture of computer
programming language and human language, and aims to expose the material and linguistic
tensions between writing and reading within the context of (non)binary poetry and queer
computer code. 6

The work is presented in a dual screen format: one side displaying the source code
(codework), and the other the visual interface of how the code is run and executed (see
Figures 7.1 and 7.2). In this particular arrangement, the source code is no longer, as in the
convention of most software, hidden from the user and is instead displayed in full to
undermine the implied hierarchy between the source and its results. The notion of queer code
is both the subject and the process of the work, and this operates on multiple levels,
“queering” what would be considered to be the normative conventions of software and its
use: addressing what a front-end interface is expected to be, and how it performs
normatively. What we experience are the performative qualities of code in terms of both its
human and nonhuman execution. When code becomes executable, it blends “form and
function,” 7 and becomes something which can be read, interpreted, executed and
performed. We see the code and we hear contributor’s spoken statements that, together,
allow the program to speak to us.

7. Vocable code

169

The core method for structuring Vocable Code is the use of constraints or rules. These are
discernible in both the source code, as well as the rules for voicing the statements that
themselves express different rhythms and meanings. 8 Below are some of
these constraints:

– When writing the source code, do not use the binary 0 or 1 (e.g. declaring the value of a
variable), a single X or Y (e.g. the common use of variable names), a single operator of
“>” or “<” (e.g. the common use of a single operator in a conditional statement).

– When writing the source code, be mindful of the naming of variables, arrays, and functions.
– For each specific voice, the sentence starts with the phrase: “Queer is.”
– For each specific voice, each sentence contains a minimum of one word, but no more than

five in total.

Exercise in class (Decode)

RunMe, https://dobbeltdagger.net/VocableCode_Educational/

Figure 7.2: The live coding/educational version of Vocable Code

Task 1 (Decoding text objects):

Look at the education version of Vocable Code and focus on the right-hand side with
the dynamic text display. Observe some of the characteristics of the text objects:

https://dobbeltdagger.net/VocableCode_Educational/

Aesthetic Programming

170

1. There is always text on the black screen/canvas.

2. The text moves upwards and mostly downwards, but also sometimes slowly
oscillates between the two.

3. The text fades over time.

4. The text varies in size.

5. Some of the text’s content overlaps, but there are at least ten different or
unique texts.

6. For each new batch of text shown on screen, you can hear a voice speaking one of
the texts.

7. There is a maximum limit of the text appearing simultaneously on screen. (Similar
to the previous object-oriented approach, the text is continuously generated on
screen if certain conditions are met.)

8. Can you continue the list?

The Vocable Code program uses object-oriented programming to construct the class
and the text objects. Recall what we learnt in the previous chapter, and without
looking at the source code:

1. Describe the properties and methods of the class on text?

2. Decode when and how (new) text objects are created/removed?

Task 2 (Speculation and Mapping):

Based on what you see and hear, what are the other functions/features that have
been implemented in the program, especially in relation to text and voice, and can you
describe them?

Now look at the source code particularly the class-object block function
notNew(getQueer){}. Can you map the source code to your earlier description of
text objects?

Task 3 (Thinking):

By reading the source code, you might discover that some of the coding styles are
different from what we have learnt thus far, e.g. the Boolean logic of notTrue and
notFalse instead of “True/False,” the use of repeatable decimals, the use of the
function abs, as well as the use of loadSound with a callback instead of the preload
function, and so on.

1. Can you spot the different styles?

2. Can you read these blocks of code aloud?

7. Vocable code

171

3. How are these expressive and performative qualities described in the assigned
reading? 9 Can you describe and articulate these qualities using Vocable Code as
an example?

Textuality

In Vocable Code , both voice and text are interlinked. The program picks only one selected
text to speak/play at a time, whilst others are displayed dynamically on screen. You can
explore the meaning of the words, but their placement and other design attributes further
change the way you perceive and interpret the statements. These are selected, presented,
played, and spoken randomly, and at the same time further disrupted by
mathematical chaos.

Here is the text-related syntax (code snippets) that has been used in the work:

let withPride; //font1

2

function preload() {3

 withPride = loadFont('Gilbert_TypeWithPride.otf');4

}5

…6

function notNew(getQueer){7

 this.size = random(20.34387, 35.34387);8

 this.time = random(2.34387, 4.34387);9

 this.yyyyy = random(height/3.0, height+10.3437);10

 this.xxxxx = width/2.0;11

 this.gradient = 240.0;12

}13

…14

this.acts = function() {15

 textFont(withPride);16

 textSize(this.size);17

 textAlign(CENTER);18

 this.gradient-=0.5;19

 noStroke();20

 fill(this.gradient);21

 text(getQueer, this.xxxxx, this.yyyyy);22

}23

Aesthetic Programming

172

Type

loadFont (in Line 4) supports opentype font style (.otf and .ttf) and returns a PFont object
through withPride above.

“Gilbert_TypeWithPride.otf” is a free font licensed under a Creative Commons Attribution-
ShareAlike 4.0 International License, and can be downloaded from the Internet 10
(www.typewithpride.com). It is designed to honor the memory of Gilbert Baker the creator of
the iconic Rainbow Flag who died in 2017.

Figure 7.3: The font Type with Pride. Image
from https://www.typewithpride.com/

textFont() (in Line 16) means to get ready to print out or write the text with the chosen font,
and in this case was previously defined through the returned PFont object withPride.

textSize() (in Line 17) sets the font size for use. For this sketch it takes a random value
between 20.34387 and 35.34387.

textAlign() (in Line 18) takes the first argument for the horizontal alignment. It contains the
options LEFT, RIGHT and CENTER. The length of sentences varies according to the number of
words used. In Vocable Code , the text is aligned CENTER regardless of the
sentence’s length.

noStroke() and fill() (in Lines 20-21) do similar things for shapes. The former disables
drawing the stroke (outline), while the latter sets the text color. fill() accepts RGB values
as well as other color formats.

text() (in Line 22) draws the text on screen with specific words and in positions (both
horizontal and vertical coordination of the text), e.g. text(getQueer, this.xxxxx, this.yyyyy);

7. Vocable code

173

Conditional structure

Different if statements are implemented in Vocable Code .

The snippets of code concerning the first conditional structure:

The first statement uses the relational operator called OR (||) to check against the two
conditions (the full list of relational operations is covered in the section of “Relational
operations” in Chapter 2, “Variable geometry”). If either of the two is true the program will
execute the next two lines of code (see Lines 3-4). Naturally, the two conditions might not be
met, and, in that case, else is used. This block of code determines which new text object
should be selected for display as each person can only contribute two spoken/text
statements, and some may have provided one. As such, some checking logic needs to be
implemented in order to display the text.

Snippets of code concerning the second conditional structure:

The second one only uses the if statement and that means it will run the function
SpeakingCode when the condition is met and it won’t have an alternative route, meaning that
the program will just exit the conditional structure, and continue the execution after the
closing curly bracket.

The second conditional structure is about identifying which text to speak aloud. Every new
batch of text contains between two and four texts (see Line 19 in the later full source code),
and the program picks the third one (knowing that an array starts with [0] index and points
to the third item when the index is [2]). Based on the selected text, the program will play
the corresponding voice file. abs is a syntax and function from p5 which calculates the
“absolute” value of a number and only returns a positive value.

Of course, the selected line of code is specifically structured around wider political issues
concerning gender and sexuality, and attempts to express ideas about queering code. Read
aloud, the block of code might translate as: “If gender equals absolute two, speaking code,

if (queers[WhoIsQueer].myStatement == "null" ||1

 makingStatements == int(2.34387)) {2

 queerRights.push(new notNew(queers[WhoIsQueer].yourStatement));3

 makingStatements = 2.0;4

}else{5

 queerRights.push(new notNew(queers[WhoIsQueer].myStatement));6

}7

if (gender == abs(2)) {1

 //which statement to speak - ref the json file2

 SpeakingCode(queers[WhoIsQueer].iam, makingStatements);3

}4

Aesthetic Programming

174

queers, who is queer, I am, making statements.” Technically speaking, using the abs function
is unnecessary and it could be also written to select another array’s index. Code is
constructed from language and can be poetic as the programmer can play with the
structure, and experiment with symbols, and the syntactic logic. Since Vocable Code is also
considered to be codework or code poetry, it invites both the audience and the machine to
speak the code aloud (and proud).

Snippets of code concerning the third conditional structure:

There are two conditional statements in the function draw(). The first if-statement checks for
texts that are off canvas. This has to be done continuously because the off-screen text
instances (objects) will be removed (using splice) to avoid unwanted elements/objects
continuing to exist in the program (as was the case with the Eating-tofu game in Chapter
6, “Object abstraction”). The second if-statement checks how many texts remain on screen.
If the screen contains less than or equal to two texts, then it will generate new texts with the
function makeVisible().

Snippets of code concerning the fourth conditional structure:

The last “if-else” conditional structure is set within the class method, and checks if the text is
off canvas, particularly along the y-axis. Within the class’s method this.shows=function(), the
conditional statement incorporates the relational operator “OR” (||), in which neither
condition needs to be “true” (if (this.yyyyy <= 4.34387 || this.yyyyy >= height+10.34387)).

function draw() {1

…2

 if (support == "notFalse") {3

 queerRights.splice(non_binary, int(1.34387));4

 }5

…6

 //when to generate new text -> check how many left on screen7

 if (queerRights.length <= 2.0) {8

 makeVisible();9

 }10

}11

//check disappeared objects1

 this.shows = function() {2

 let status;3

 if (this.yyyyy <= 4.34387 || this.yyyyy >= height+10.34387) {4

 status = "notFalse";5

 } else {6

 status = "notTrue";7

 }8

 return status;9

 };10

7. Vocable code

175

Additionally, there is also an else statement to handle the results of checking whether the
conditions have been met (see Line 6). Therefore, it is read as if either one of the two
conditions has been met, the variable status will be assigned as notFalse (this means the
text is off screen at the top or bottom), and else if the text still remains on screen, the
variable status will be assigned as notTrue. The values notFalse and notTrue belong to the
status variable of the “String” type. However, in general programming practice, Boolean logic
(with the “Boolean” type) tends to be understood as an absolute binary reality of “true” or
“false.” Initially, this seems fundamental to computational logic and can be relate this to the
zeros and ones to which information is reduced in machine code. However, arguably and
conceptually, notFalse and notTrue suggest an undoing of binary relations.

JSON

Beyond the core source code, Vocable Code utilizes a text-based file (in JSON format) to
store the data from all voice donors, including their written statements (see below snippets
of the JSON file). Using JSON (Javascript Object Notation), allows all the data in a JSON file
to be updated without changing anything at JavaScript source code level.

Snippets of the JSON file:

JSON is an open-standard, independent file format, which is widely used for data storage and
communication on the internet, and in software applications. This format can be read and
processed by many programming languages such as JavaScript. A piece of software

{1

 "description": "This file contains the meta data of queer text",2

 "condition": "yourStatement cannot be null",3

 "copyLeft": "Creative Common Licence BY 4.0",4

 "lastUpdate": "Apr, 2019",5

 "queers":6

 [7

 {8

 "iam": "WinnieSoon",9

 "yourStatement": "not fixed not null",10

 "myStatement": "not null not closed"11

 },{12

 "iam": "GeoffCox",13

 "yourStatement": "queer and that means queer",14

 "myStatement": "null"15

 },{16

 "iam": "GoogleAlgorithm",17

 "yourStatement": "not a manifesto",18

 "myStatement": "here"19

 }20

}21

Aesthetic Programming

176

implements computational logic to manipulate data, such as retrieving and displaying data
on a screen in any color, size, and at any tempo. This kind of separation of data and
computational logic is common in software development. Google, for example, offers its web
or image search results in JSON format using its Application Programming Interfaces (APIs).
More on APIs in the next chapter.

JSON looks similar to JavaScript in terms of its use of arrays and objects, but they are
formatted differently. Some of the rules are:

– Data is stored in name/value pairs, e.g. "copyLeft": "Creative Common Licence BY 4.0" and
the pair are separated by a colon.

– All property name/value pairs have to be surrounded by double quotes.
– Each data item is separated by commas.
– Square brackets “[]” hold arrays.
– Curly braces “{}” hold objects as there are many object instances that share the

same structure.
– Comments are not allowed.
– No other computational logics like conditional structures or for-loop can be used.

To process the JSON file, you need to use the syntax loadJSON() in p5.js. See how this is put
together in a sketch:

Step 1: loadJSON (to load the specific file and path)

Step 2: Process the JSON file (selected lines)

let whatisQueer;1

2

function preload() {3

 whatisQueer = loadJSON('voices.json');4

}5

function makeVisible() {1

 //get the json txt2

 queers = whatisQueer.queers;3

 //which statement to speak - ref the json file4

 SpeakingCode(queers[WhoIsQueer].iam, makingStatements);5

}6

7. Vocable code

177

Figure 7.4: Snippets of Vocable Code concerning reading JSON

After loading the JSON file voices.json the program (see Figure 7.4) then points at the queers
array and looks for the name/value pairs iam and makingStatements from the randomly
selected possible statements to call (among yourStatement and myStatement). Lastly, the
function SpeakingCode is called. Figure 7.4 illustrates how communication is affected between
the source code (on the left) and the JSON file (on the right), passing the data (between the
JSON file and the program) so it can be displayed on screen.

Step 3. Locating and loading the sound file

Step 4. Play the sound file

All the voice files are stored in the “wav” sound file format. The files are named according to a
specific convention that follows the field iam in the JSON file. In this way, we can link, or
“concatenate” (in programming terms), all the pieces using the operator + so the specific

//which voice to speak and load the voice1

function SpeakingCode(iam, makingStatements) {2

 let getVoice = "voices/" + iam + makingStatements + ".wav";3

 speak = loadSound(getVoice, speakingNow);4

}5

function speakingNow() {1

 speak.play();2

}3

Aesthetic Programming

178

voice file is retrieved and played: let getVoice = "voices/" + iam + makingStatements + ".wav";
(see Line 3 in Step 3). As discussed above, the voice selected is synchronized with the text
on screen.

There is a p5.sound library which extends p5 with web audio functionality to deal with sound,
or, in this case, to play a voice file. Among many sound-related functions like
capturing/listening from an audio input (as we have demonstrated in Chapter 4, “Data
capture”), we simply need methods to load and play the sound files. To do so, loadSound() is
used as a callback to make sure the sound is fully loaded (it takes time as it also involves file
size issues, memory, and hardware) before the function speak.play() is invoked (see Line 2 in
Step 4).

loadSound() can be used in the Preload() function where files can be loaded in advance by
specifying the files’ paths. However, the idea behind Vocable Code is more poetic, and
keeping the JavaScript source code as the core corpus is part of the concept. Instead of
using Preload(), the program uses the “callback function” 11 to load the sound which might
not be the most efficient way as it incurs buffering problems while loading the files on-the-fly.
But this way of working with code opens up thinking about language structures, what it
means to load, and play/speak the files/voices in real-time and repeatedly, and which forms
of instability of expression are invoked.

Source code

// CC BY 4.0 - https://creativecommons.org/licenses/by/4.0/1

let withPride; //font2

let whatisQueer;3

let queerRights = [];4

let makingStatements;5

let speak;6

let voices = [];7

let queers = [];8

9

function preload() {10

 withPride = loadFont('Gilbert_TypeWithPride.otf'); //only works on old p5.js11

 whatisQueer = loadJSON('voices.json');12

}13

//creation of text, which text and which voice to speak14

function makeVisible() {15

 //get the json txt16

 queers = whatisQueer.queers;17

 //add no. of statements on screen18

 let addQueers = int(random(2.34387, 4.34387));19

 //prepare to select and add statements on screen one by one20

 for (let gender = int(0.34387); gender <= addQueers; gender++) {21

 //select 1 from the json list22

7. Vocable code

179

 let WhoIsQueer = int(random(queers.length));23

 makingStatements = int(random(2.34387, 3.34387));24

 //check any empty statement (because not everyone has two)25

 if (queers[WhoIsQueer].myStatement == "null" ||26

 makingStatements == int(2.34387)) {27

 queerRights.push(new notNew(queers[WhoIsQueer].yourStatement));28

 makingStatements = 2.0;29

 }else{30

 //both statements with values on it, need to choose between 231

 queerRights.push(new notNew(queers[WhoIsQueer].myStatement));32

 }33

 //each batch of adding new text will only select the first voice to speak34

 if (gender == abs(2)) {35

 //which statement to speak - ref the json file36

 SpeakingCode(queers[WhoIsQueer].iam, makingStatements);37

 }38

 }39

}40

//which voice to speak and load the voice41

function SpeakingCode(iam, makingStatements) {42

 let getVoice = "voices/" + iam + makingStatements + ".wav";43

 speak = loadSound(getVoice, speakingNow);44

}45

function speakingNow() {46

 speak.play();47

}48

function setup() {49

 createCanvas(windowWidth, windowHeight);50

}51

function draw() {52

 background(2.34387);53

 //movement and display of text54

 for (let non_binary in queerRights) {55

 queerRights[non_binary].worldWide();56

 queerRights[non_binary].acts();57

 //check off canvas text and delete objects58

 let support = queerRights[non_binary].shows();59

 if (support == "notFalse") {60

 queerRights.splice(non_binary, int(1.34387));61

 }62

 }63

 //when to generate new text -> check how many left on screen64

 if (queerRights.length <= 2.0) {65

 makeVisible();66

 }67

}68

//for every creation of new text (class-object)69

Aesthetic Programming

180

Exercise in class

1. Work as a group.

2. Download the whole Vocable Code program (https://gitlab.com/aesthetic-
programming/book/-/tree/master/public/p5_SampleCode/ch7_VocableCode),
and run it on your own computer.

3. Briefly discuss the various computational structures and syntax to understand how
things generally work, then specifically examine the relationship between voice file
naming and the JSON file structure.

function notNew(getQueer) {70

 //attributes of text71

 this.size = random(20.34387, 35.34387);72

 this.time = random(2.34387, 4.34387);73

 this.yyyyy = random(height/3.0, height+10.3437);74

 this.xxxxx = width/2.0;75

 this.gradient = 240.0;76

 this.worldWide = function() {77

 this.yyyyy -= this.time;78

 this.time += sin(radians((frameCount%360.0)*this.time)) - 0.009;79

 };80

 this.acts = function() {81

 textFont(withPride);82

 textSize(this.size);83

 textAlign(CENTER);84

 this.gradient-=0.5;85

 noStroke();86

 fill(this.gradient);87

 text(getQueer, this.xxxxx, this.yyyyy);88

 };89

 //check disappeared objects90

 this.shows = function() {91

 let status;92

 if (this.yyyyy <= 4.34387 || this.yyyyy >= height+10.34387) {93

 status = "notFalse";94

 } else {95

 status = "notTrue";96

 }97

 return status;98

 };99

}100

https://gitlab.com/aesthetic-programming/book/-/tree/master/public/p5_SampleCode/ch7_VocableCode

7. Vocable code

181

4. Follow the instructions and record your own voice with your computer or mobile
phone. (The program only accepts the .wav file format)

– Find a blank sheet of paper and prepare to write a sentence.

– Complete the sentence with the starting given words: “Queer is.”

– Each sentence contains no more than 5 words (the first words “queer is” don’t
count). It is ok to add just one word.

– Produce a maximum of two sentences/voices.

– Download/locate a voice recording app on your smartphone (e.g. Voice
Recorder on Android or Voice Memos on iOS).

– Try to find a quiet environment, record your voice, and see if the app works
(controlling the start and end the recording).

– Prepare to record yourself reading your written sentence(s).

– You may decide the temporality and rhythm.

– You may either speak the full word or full sentence with different intonation.

– Record your voice, then convert the recording into a .wav file. Audacity is an
example of free software that can do so.

5. Add your voice/s and update the JSON file and put your voice files in the voices
folder. Refresh the program and see if you can hear your own voice among
the voices.

6. Advanced: Try to change the text presentation, e.g. its color or its
animated behavior.

7. Discuss the different critical and aesthetic aspects of queer code.

While()

In high-level programming languages like JavaScript, the source code sends both
instructions to machines as well as communicating with humans. In this way, writing source
code involves the use of signs and symbols, both semantics and syntactics, and operates
across both programming and natural languages. Beyond the potential for poetry previously
mentioned, there are other possible interventions. Lingdong Huang has developed an
esoteric programming language based on ancient Chinese called “wenyan-lang,” that closely
follows the grammar and tone of classical Chinese literature. 12 Using signs and symbols as
well as combining formal logic and poetic expression are the starting points for
understanding the double logic of vocable code.

As we learnt previously, abstraction is a concept fundamental to software development,
which differs from machine operations, thereby focusing on building abstractions as objects.
The use of class/object structures (text as object instances), conditional structures,

Aesthetic Programming

182

procedures, and subroutines, such as the for-loop, are some of the ways of presenting and
executing the source code. However, in the context of machine execution, variable names —
the semantic layer — are stripped away and this human-readable information is avoided. This
“secondary notation” does not affect the execution of the program apart from memory size,
but does provide other potential uses. 13 In this way, choosing meaningful identifier names
is more for the purpose of expression and communication, as the example above clearly
demonstrates. This is where we hear the programmer’s voice.

Furthermore, when thinking about the importance of source code for understanding the
operations of software, it is important to recognize that source code does not show how a
machine operates with physical memory (such as store, load, add and halt actions), how it
translates symbolic actions into real addresses, or how it discloses operation sequences as
low-level programming languages would do. The point is the source code only describes
what might be visible to hear/see, but it does not facilitate other forms of knowledge about
how a machine operates from the source code. To be specific, Vocable Code displays the
two interfaces side by side. One displays the source code, the other what happens when it is
executed, but there is a discrepancy as what you see is not literally how it operates. This
could perhaps be understood in two ways, as follows.

Firstly, the source code is made available, but the process of translation from source code to
machine code is still hidden, and not all the lines are executed. Wendy Hui Kyong Chun refers to
this as a process of “sorcery” and summarizes the problem: “Higher level programming
languages — automatic programming — may have been sold as offering the programmer more
and easier control, but they also necessitated blackboxing even more the operations of the
machine they supposedly instructed.” 14 Accordingly, we would need to nuance the statement
that source code actually does what it says. When one speaks the source code, it performs
differently than how a machine performs. Yet it should be said that this is the case with humans
too in that there is also an interface and translation between physiognomy and action.

Secondly, source code and its execution, usually in the form of screen interface, should be
considered as translations rather than equivalents of each other, and this points to the
veracity of the interface-principle WYSIWYG (what-you-see-is-what-you-get). In Vocable Code ,
the moving text is only part of the result of the source code running, and is not able to fully
capture the complexity of its operations. In this way, the artwork perhaps challenges the
usual, prominent front-end interfaces and the transmission of meaning from one source to
another by giving voice to both the front and back ends, or even queering the demarcation.
This undermines any binary relation between states and the hierarchical logic of cause and
effect, and in this respect we would invoke Karen Barad and her assertion that causes and
effects work through “intra-actions” (queering causality). 15

Vocable Code has a direct relation to bodily practices, the act of voicing something, and how
the voice resonates with political practices. The voices of the program or programmer, and
humans voices, combine with other social bodies in producing meaning that goes beyond
simple representation or interpretation. In other words, computation cannot be just reduced
to the simplistic formal logic of input and output, and nor can speaking machines simply be
juxtaposed to speaking humans as clearly they are more deeply entangled. 16 Humans do
not speak alone as there are also nonhuman actants such as variables, arguments, source
code, and machine code that speak too — to be specific with an example, the sound library

7. Vocable code

183

with the function speak.play() joins the chorus. There is a politics to this as some voices are
louder than others, and some are marginalized or suppressed altogether. In executing the
function SpeakingCode(iam, makingStatements), we question who is speaking, to whom, and
under what conditions? We want to make these relations more queer.

There are clear power dynamics at work in computing, at a fundamental level, if 1s and 0s are
considered to be numbers of equivalent status in mathematics. In Zeros + Ones (1997),
Sadie Plant confirms that all computers translate information into the zeros and ones of
machine code and this reflects the underlying “orders of Western reality”:

“Whether […] gathering information, telecommunicating, running washing machines,
doing sums, or making videos, all digital computers translate information into zeros
and ones of machine code. These binary digits are known as bits and strung
together in bytes of eight. The zeros and ones of machine code seems to offer
themselves as perfect symbols of the orders of Western reality, the ancient logical
codes which make the difference between on and off, right and left, light and dark,
form and matter, mine and body, white and black, good and evil, right and wrong,
life and death, something and nothing, this and that, here and there, inside and out,
active and passive, true and false, yes and no, sanity and madness, health and
sickness, up and down, sense and nonsense, west and east, north and south. And
they made a lovely couple when it came to sex. Man and woman, male and female,
masculine and feminine: one and zero looked just right, made for each other: 1, the
definite, upright line; the 0, the diagram of nothing at all: penis and vagina, thing and
hole […] hand in glove. A perfect match.” 17

Although it takes two to make a binary (and set up the heterosexist paradigm), clearly
inequalities of power are expressed in the tendency to privilege one side of the pairing
(master and slave, 18 parent and child, human and machine, and so on). As discussed in
Chapter 5, “Auto-generator,” and further discussed in the final chapter of this book, the Turing
Test resonates with these power dynamics. Plant quotes Turing as saying: “the intention in
constructing these machines in the first instance is to treat them as slaves, giving them only
jobs which have been thought out in detail, jobs such that the user of the machine fully
understands in principle what is going on all the time.” 19 Plant’s further example of this
fantasy of domination is the sci-fi film Bladerunner (1984) as an advanced Turing Test in
which the only indication of artificiality is a tiny flicker in the non-human eye’s iris in response
to targeted questioning. In the film’s narrative, the non-human worker-slaves have rightly
begun to question their conditions. Such examples make it clear that the ability to imagine
conditions differently is embedded in the system itself, in the potential failure to carry out
prescribed instructions or commands if unreasonable.

The biography of Turing as a gay man, at a time when homosexuality was still a criminal
offense in the UK, 20 adds weight to claims to reject unreasonable demands. Humans do
not necessarily follow or agree with rules as prescribed by society, and although Turing’s
sexuality was tolerated in the context of the war effort, under “normal” (peacetime)
conditions it was perceived to be a problem and he was found guiltily of gross indecency in
1952. 21 Here, as Plant describes, the historical facts collapse into bizarre allegory. First of
all, he was prescribed estrogen to reduce his sexual urge, on the basis of the dubious logic

Aesthetic Programming

184

that to all intents and purposes he was female. This was a reversal of prior judgements
forcing gay men to take testosterone to make them more male, yet ironically making them
more aroused hormonally. Plant concludes the Turing story: “Two years later he was dead. By
the side of the table was an apple, out of which several bites had been taken. And this queer
tale does not end here. There are rainbow logos with Turing’s missing bytes on every Apple
Macintosh machine.” 22

To conclude this chapter, and our “queer commentary” 23 on the making of Vocable Code
with its strange syntax - such as notFalse and notTrue - as well as its many repetitive
decimals, and suchlike, by emphasizing that: Queer is […] making binaries strange.

MiniX: E-lit

Objective:

– To understand how JSON works technically, in terms of storing data, and how
data can be retrieved using code.

– To reflect upon the aesthetics of code and language, as well as the audio
dimensions of electronic literature (e-lit).

Get additional inspiration:

– Dial (2020) by Lai-Tze Fan & Nick Montfort, http://thenewriver.us/dial/, with
JavaScript source code https://nickm.com/fan_montfort/dial/.

– Mexicans in Canada by Amira Hanafi (2020),
http://amiraha.com/mexicansincanada/.

– A House of Dust by Alison Knowles and James Tenney (1967), reimplemented
by Nick Montfort for Memory Slam (2014),
https://nickm.com/memslam/a_house_of_dust.html.

– Corpora - A repository of JSON files by Darius Kazemi (n.d.),
https://github.com/dariusk/corpora/tree/master/data.

– e-lit collection1 , http://collection.eliterature.org/1/.
– e-lit collection2 , http://collection.eliterature.org/2/.
– e-lit collection3 , http://collection.eliterature.org/3/.
– RiTa library by Daniel Howe (2006-ongoing),

http://rednoise.org/rita/download.php.

Tasks (RunMe):

1. To design a piece of e-lit that utilizes text as the main medium (but in recognition
that text can take various forms, including code and voice).

2. To implement JSON file(s) for text organization, storage, and retrieval.

http://thenewriver.us/dial/
https://nickm.com/fan_montfort/dial/
http://amiraha.com/mexicansincanada/
https://nickm.com/memslam/a_house_of_dust.html
https://github.com/dariusk/corpora/tree/master/data
http://collection.eliterature.org/1/
http://collection.eliterature.org/2/
http://collection.eliterature.org/3/
http://rednoise.org/rita/download.php

7. Vocable code

185

Questions to think about (ReadMe):

– Provide a title of your work and a short description (1,000 characters or less).
– Describe how your program works, and what syntax you have used, and learnt?

Analyze and articulate your work:

– Analyze your own e-lit work by using the text Vocable Code and/or
The Aesthetics of Generative Code (or other texts that
address code/voice/language).

– How would you reflect on your work in terms of Vocable Code?

Required reading

– Geoff Cox and Alex McLean, “Vocable Code,” in Speaking Code (Cambridge, MA: MIT Press,
2013), 17-38.

– Allison Parrish, “Text and Type” (2019), https://creative-coding.decontextualize.com/text-
and-type/.

– Daniel Shiffman, “10.2: What is JSON? Part I - p5.js Tutorial” (2017),
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r.

– Daniel Shiffman, “10.2: What is JSON? Part II - p5.js Tutorial” (2017),
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r.

Further reading

– Geoff Cox, Alex McLean, and Adrian Ward, “The Aesthetics of
Generative Code,” Proceedings of Generative Art Conference,
Milan (2001).

– Liz W. Faber, The Computer’s Voice: From Star Trek to Siri
(Minneapolis, MN: University of Minnesota Press, 2020).

– Rita Raley, “Interferences: Net.Writing and the Practice of
Codework,” Electronic Book Review (2002),
http://electronicbookreview.com/essay/interferences-net-
writing-and-the-practice-of-codework/.

– Margaret Rhee, “Reflecting on Robots, Love, and Poetry,” XRDS:
Crossroads 24, no. 2, December (2017): 44–46,
https://dl.acm.org/doi/pdf/10.1145/3155126?download=true.

https://creative-coding.decontextualize.com/text-and-type/
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r
http://electronicbookreview.com/essay/interferences-net-writing-and-the-practice-of-codework/
https://dl.acm.org/doi/pdf/10.1145/3155126?download=true

Aesthetic Programming

186

Notes

1. Here we reference John Langshaw Austin’s
How To Do Things With Words , and
by extension, Geoff Cox and Alex McLean’s
Speaking Code (Cambridge, MA: MIT
Press 2013). The analogy of free software
to free speech is explicitized in the Free
Software Foundation’s definition: Free
software means that the users have the
freedom to run, copy, distribute, study,
change and improve the software. “Thus,
‘free software’ is a matter of liberty, not
price. To understand the concept, you
should think of ‘free’ as in ‘free speech’,
not as in ‘free beer’.” See https://www.g
nu.org/philosophy/free-sw.html.

2. Cox, Speaking Code , 17.
3. Florian Cramer, Language in Software
Studies, 2008, 168-173; see also Warren
Sack, The Software Arts (Cambridge,
Mass.: MIT Press, 2019)

4. Florian Cramer’s claim was made in the
context of the I Love You exhibition
(2002-4) a work in progress-exhibition
developed by digitalcraft.org Kulturbüro,
see http://www.digitalcraft.org/iloveyo
u/.

5. Relevant to this discussion is what Donald
Knuth calls “literate programming,” a
methodology that treats a program like a
piece of literature, addressed to human
beings rather than to a computer. For
more on this, see Donald Knuth’s “Literate
Programming,” The Computer Journal
27, no.2 (1984): 97–111, https://academi
c.oup.com/comjnl/article/27/2/97/34
3244; https://doi.org/10.1093/comjnl/2
7.2.97. Further examples might include
those by Mez Breeze (1994), John Cayley
(2002), Michael Mateas and Nick Montfort
(2005), Florian Cramer (2008), Graham
Harwood (2008), Daniel Temkin (2011),
Zach Blas and Micha Cárdenas (2012,
2013), Geoff Cox & Alex McLean (2013),
Allison Parrish (2015), Ian Hatcher (2015,
2016) and Winnie Soon & Geoff Cox
(2018), to name only a few.

6. Winnie Soon, “Vocable Code, MAI:
Feminism and Visual Culture 2
(November 10, 2018), https://maifeminis
m.com/vocable-code/.

7. Roopika Risam, The Poetry of
Executable Code (2015), http://jacket2.
org/commentary/poetry-executable-co
de.

8. For a discussion around the constraint-
based writing of Vocable Code , see Eva
Heisler, “Winnie Soon, Time, Code, and
Poetry,” Asymptote Journal , Jan (2020),
https://www.asymptotejournal.com/vis
ual/winnie-soon-time-code-and-poetry/.

9. Cox, Speaking Code , 24.
10. At the same time, you can also find a lot of

free and open source fonts to download
online. See, for instance, https://www.10
01freefonts.com/.

11. See the loadSound() function that can be
used as both preload() and callback, http
s://p5js.org/reference/#/p5/loadSou
nd.

12. See https://wy-lang.org/.
13. Peter Bøgh Andersen suggests a semiotic

framework to study computer systems as
sign-vehicles in order to understand how
signs are produced and interpreted. The
framework emphasizes the combination
of formal/technical structures and non-
formal/interpretable signs which is
relevant to this chapter, see Peter Bøgh
Andersen, “Computer Semiotics,”
Scandinavian Journal of
Information Systems 4, no.1, (1992): 1,
https://aisel.aisnet.org/sjis/vol4/iss1/
1/.

14. Wendy Hui Kyong Chun, Programmed
Visions: Software and Memory
(Cambridge, MA: MIT Press, 2011), 45.

15. Karen Barad, Meeting the Universe
Halfway: Quantum Physics and the
Entanglement of Matter and
Meaning (Durham, North Carolina: Duke
University Press, 2007).

16. We again point to Barad’s work here, and
what she would stress to be
entanglements of “intra-acting” human
and non-human practices. See Barad,
Meeting the Universe Halfway .

17. Sadie Plant, Zeros + Ones: Digital
Women and the New Technoculture
(London: Forth Estate, 1997), 34-35.

18. This has been discussed in Chapter 1,
“Getting started.”

19. Plant, Zeros + Ones , 88.
20. For a more detailed version of historical

events, see Andrew Hodges’s Alan
Turing: The Enigma (London: Burnett
Books, 1983).

21. Plant, Zeros + Ones , 98-99. For more
on the connections between queer people
and computing, see https://queercomp
uting.info/.

22. Plant, Zeros + Ones , 102.
23. Lauren Berlant and Michael Warner discuss

the usefulness of queer theory and what
they prefer to call “queer commentary” as
a more useful and public term outside of
academia. See Lauren Berlant and Michael
Warner, “Guest Column: What Does Queer
Theory Teach Us about X,” PMLA 110,
no. 3 (May 1995): 343–49. Vocable code is
an artwork that has been exhibited in
galleries and festivals, but it is also more
than an artwork that considers the
pragmatic and pedegogical context
throughout. When it first launched in
public, Vocable Code was performed in
an independent art space as part of the
“Feminist Coding Workshop in p5.js.” See
Winnie Soon, “A Report on the Feminist
Coding Workshop in p5.js,” Aesthetic
Programming, last updated November
30, 2017, http://aestheticprogramming.
siusoon.net/articles/a-report-on-the-femi
nist-coding-workshop-in-p5-js/.

https://www.gnu.org/philosophy/free-sw.html
http://www.digitalcraft.org/iloveyou/
https://academic.oup.com/comjnl/article/27/2/97/343244
https://doi.org/10.1093/comjnl/27.2.97.
https://maifeminism.com/vocable-code/
http://jacket2.org/commentary/poetry-executable-code
https://www.asymptotejournal.com/visual/winnie-soon-time-code-and-poetry/
https://www.1001freefonts.com/
https://p5js.org/reference/#/p5/loadSound
https://wy-lang.org/
https://aisel.aisnet.org/sjis/vol4/iss1/1/
https://queercomputing.info/
http://aestheticprogramming.siusoon.net/articles/a-report-on-the-feminist-coding-workshop-in-p5-js/

8. Que(e)ry data

187

8. Que(e)ry data

8. Que(e)ry data

setup()

MiniX:
Working with APIs

(in a group)

Required readingstart()

While()

Exercise in class

Image processing:
fetching, loading and display

Source code

LoadPixels()
Exercise:

Accesing web APIs
(step by step)

APIs Que(e)rying data

Exercise in class Different types of bugs Notes

Further reading

189

190

190

191

193

194

196

197
200

201

204

205

207

208

208

209

Contents

– setup()

– start()

– Exercise in class

– Image processing: fetching, loading and display

– Source code

– Exercise: accessing web APIs (step by step)

– APIs

– Que(e)rying data
– Exercise in class

– LoadPixels()

– Different types of bugs

– While()

– MiniX: Working with APIs (in a group)

– Required reading

– Further reading

– Notes

8. Que(e)ry data

189

setup()

To query something is to ask a question about it, to check its validity, or accuracy. When
querying a database, despite the apparent simple request for data that enables selectivity
with regard to which and how much data is returned, we should clearly question this
operation too. We need to query the query.

Search engines (like Google and Baidu) are a good example of applications that aggregate
content and algorithmically return search results according to a keywords search. They
promise to answer all our questions, but do not make the underlying processes (and
ideology) visible that prioritize certain answers over others. In a query-driven society, search
engines have become powerful mechanisms for truth-making and for our making sense of
seemingly endless quantities of data, manifested as streams, and feeds — indicative of the
oversaturation of information and the rise of the attention economy. According to Wendy Hui
Kyong Chun, user habits provide the formula for big data businesses. She explains: “Through
habits users become their machines: they stream, update, capture, upload, share, grind, link,
verify, map, save, trash and troll.” 1 The habit of searching, for instance, is transformed into
data that is storable, traceable, and analyzable.

We have already explored some of the processes programs use to capture input data in
Chapter 4, “Data capture,” especially data that is connected to physical devices, and in this
chapter we expand this exponentially to data hosted on online platforms. We scale up from
the capture of data to the storage, and analysis of massive amounts of captured data — so-
called “Big Data” (or even “Big Dick Data” if we consider this to be a masculinist fantasy) 2
— which is in turn utilized for user-profiling, targeted marketing, personalized
recommendations, and various sorts of predictions and e-commerce, and so on.
Subsequently it would seem that: “We’re not in control of our search practices — search
engines are in control of us and we readily agree, though mostly unconsciously, to this
domination.” 3 But arguably it’s not quite as deterministic as this, as these operations are
part of larger socio-technical assemblages and infrastructures — including data, data
structures, and human subjects — that are also constantly evolving and subject to
external conditions.

To make some of these interacting entities tangible, and to offer a less-deterministic vision of
datafication, this chapter focuses on how data can be acquired through the real-time query of
an Application Programming Interface (API) — a communication protocol between different
parts of a computer program intended to simplify software development. Querying data, in
the form of a two-way communication process, is about information processing coupled with
data selection, extraction, transmission, and presentation through “the logic of request and
response,” 4 and we will use a structured data file like JSON for this (introduced in the
preceding chapter). Although there are many ways of addressing these issues, the following
introduces a generative artwork that utilizes the Google’s image search API and
demonstrates querying beyond technical description to further question some of the
assumptions surrounding openness and accessibility: to “que(e)ry data” in other words. The
play on words indicates our desire to unsettle normative data practices that affirm stable
categories of (gender) representation.

Aesthetic Programming

190

start()

net.art generator (nag) 5 is an application that runs in a web browser to generate new
images, created by artist Cornelia Sollfrank in 1997, and the latest version, 5b, in which the
program was updated and maintained by Winnie Soon in 2017. The interface requires the user
to enter a title which then functions as the search term, and to enter a name as the author.
Sollfrank’s initial idea was to “hack” a net.art competition called Extension by generating
several hundred submission entries with fake international female artist profiles. The program
that generated the entries was called Female Extension — an undercover example of net.art
in itself — to make ironic feminist comment on the underrepresentation of female artists in
the media art scene at that time. 6 Sollfrank not only created fictitious names, but also
email addresses, phone numbers, and addresses for each applicant, along with an example
of original net.art work.

This work challenges preconceptions of geeky male hacker culture, as do her earlier
documentaries that interviewed fake female hackers, and the naming of the cyberfeminist
group she was part of: “Old Boys Network.” 7 Sollfrank’s ironic claim that “a smart artist
makes the machine do the work” (itself a hack of Lewitt’s maxim, as referred to in Chapter 5
has relevance here too as a clarification of “hacking the art operating system,” as she puts
it.) 8

Female Extension was later developed into the web application nag and a functional tool for
generating images on the fly from available data to further question normative authorship,
copyright, and some of the underlying infrastructures of artistic production. The latest version
of nag generates images by combining the data sent from Google using the web search API.
Interestingly there is a daily limit set at one hundred API requests, which means that once
exceeded, users will experience a customized error page, and images can no longer be
retrieved. The issue of visibility therefore shifts from a politics of representation (data on female
artists) to the nonrepresentational realm of APIs, and to what extent we are granted access to
hidden layers of software that queries the available data, and generates new arrangements.

Exercise in class

Go to net.art generator (https://nag.iap.de/) and explore the generation of images
and previously created images. Pay close attention to the interface and map out the
relationship between user input (e.g. a title) and the corresponding output (the
image). What are the processes in between the input and output? How are the images
composited and generated?

8. Que(e)ry data

191

Figure 8.1: The net.art generator web interface with the input
title “queeries”

Image processing: fetching, loading

and display

The following source code of this chapter is a snippet from nag showing the web API’s
request and response logic: requested data passes through a Web API and then Google
returns the corresponding data using the key syntax loadJSON(). The major differences when
using JSON between this and the previous chapter is that the JSON file is not located on your
computer and created by yourself, but online. As such, the data is generated dynamically in
(near) real-time. The JSON file has a more complex data and organizational structure.

RunMe https://aesthetic-programming.gitlab.io/book/p5_SampleCode/ch8_Que(e)ryData/

https://aesthetic-programming.gitlab.io/book/p5_SampleCode/ch8_Que(e)ryData/

Aesthetic Programming

192

Figure 8.2: The process of pixel manipulation Figure 8.3: The manipulation of Warhol flowers

For this chapter’s sample code, we will focus on images from search engine results and we
will also demonstrate how to process, and display image and pixel data on screen in a
manner similar to nag. Here are the key examples of syntax:

– loadJSON(): 9 As discussed in the preceding chapter, this is the function that loads a
JSON file (from a file or a URL). In this sample code, the function is used to send the web
API (in the form of a URL) request, and receive the response in the JSON format. The
callback function is to turn the returned data into an object: loadJSON(request, gotData);.

– loadImage() 10 and image(): 11 They are both used to load and display images. Data such
as sound, files, images, and videos are objects that need to be loaded before they can be
processed. For this sample code, we do not know the location of the file in advance,
therefore this cannot be loaded by the preload() function. This is why the callback function
is used to handle the time gap between requesting and receiving the image, e.g.
loadImage(getImg, img=> {}});.

– loadPixels(): 12 If you want to manipulate or analyze the data in an image, this function
can extract and manipulate information on each image pixel, loading the data into the
built-in pixels[] array. We will examine this in more detail below.

– line(): This is used to visualize the color extracted from the selected image’s pixels.

8. Que(e)ry data

193

Source code

let url = "https://www.googleapis.com/customsearch/v1?";1

// register: https://developers.google.com/custom-search/json-api/v1/overview2

let apikey = "INPUT YOUR OWN KEY";3

//get the searchengine ID: https://cse.google.com/all (make sure image is on)4

let engineID = "INPUT YOUR OWN";5

let query = "warhol+flowers"; //search keywords6

//check other parameters: https://tinyurl.com/googleapiCSE7

let searchType = "image";8

let imgSize ="medium";9

let request; //full API10

11

let getImg;12

let loc;13

let img_x, img_y;14

let frameBorder = 25; //each side15

let imgLoaded = false;16

17

function setup() {18

 createCanvas(windowWidth,windowHeight);19

 background(255);20

 frameRate(10);21

 fetchImage();22

}23

24

function fetchImage() {25

 request = url + "key=" + apikey + "&cx=" + engineID + "&imgSize=" + imgSize +26

 "&q=" + query + "&searchType=" + searchType;27

 console.log(request);28

 loadJSON(request, gotData); //this is the key syntax to make API request29

}30

31

function gotData(data) {32

 getImg = data.items[0].image.thumbnailLink;33

 console.log(getImg);34

}35

36

function draw() {37

 if (getImg){ //takes time to retrieve the API data38

 loadImage(getImg, img=> { //callback function39

 //draw the frame + image40

 push();41

 translate(width/2-img.width-frameBorder, height/2-img.height-frameBorder);42

 scale(2);43

 if (!imgLoaded) {44

 noStroke();45

Aesthetic Programming

194

Exercise: accessing web APIs (step

by step)

The above source code describes how to retrieve a static image from Google’s image
search API (parsing JSON), and then display it on screen. As is the case with many
other web APIs, you need to have an API key, a unique identification number, for
authorization in which a client program can make API calls/requests. As a result, the
platforms can identify who is getting the data, and their traffic and usage. 13

This exercise is about getting the “key ID” and “Engine ID” from Google so that you
can input your own set of IDs and run the program successfully. This is essential
information that enables the program to run and fetch an online image on the fly.

– Step 1: Create a p5 sketch, then copy and paste the source code into your code
editor (assuming you have the HTML file and the p5 library).

– Step 2: Replace the API key with your own details on the Line 3: let apikey =
"INPUT YOUR OWN KEY";.

 fill(220);46

 rect(0, 0, img.width+frameBorder*2, img.height+frameBorder*2);47

 image(img, frameBorder, frameBorder);48

 imgLoaded = true;49

 }else{50

 //draw lines51

 img.loadPixels();52

 img_x = floor(random(0, img.width));53

 img_y = floor(random(0, img.height));54

 /* The formula to locate the no: x+y*width, indicating a pixel55

 from the image on a grid (and each pixel array holds red, green, blue,56

 and alpha values), for more see here:57

 https://www.youtube.com/watch?v=nMUMZ5YRxHI */58

 loc = (img_x+img_y * img.width)*4;59

 strokeWeight(0.7);60

 //rgb values61

 stroke(color(img.pixels[loc], img.pixels[loc + 1], img.pixels[loc+2]));62

 line(frameBorder+img_x, frameBorder+img_y,63

 frameBorder+img_x, frameBorder+img.height);64

 }65

 pop();66

 });67

 }68

}69

8. Que(e)ry data

195

Figure 8.4: Google Custom Search interface

– Register a Google account if you don’t have one (a Google account is needed in
order to use the web API)

– Login to your account
– Go to Google Custom Search 14 and find the section API key
– Click the blue button “Get A Key” (see Figure 8.4) and then create a new project

by entering your project name (e.g. “nag-test”) and press enter
– You should be able to see the API key and you just need to copy and paste the

key into your sketch
– Step 3: Replace the Search engine ID (cx) with your own, on the the Line 5: let
engineID = "INPUT YOUR OWN";.

– Go to Custom Search Engine 15
– Click the “Add” button to add a search engine
– You can limit your search area but if you want to search all of Google, simply

type “http://www.google.com”
– Enter the name of your search engine, e.g. “nag-test”
– By clicking the blue “Create” button, you agree to the terms of Service offered

by Google (and you should know your rights of course)
– Go to the control panel and modify the search engine’s settings
– Copy and paste the search engine ID and put it in your sketch

– Step 4: Configuration in the control panel
– Make sure “Image search” is ON — blue indicates it is (see Figure 8.5)
– Make sure the “Search the entire web” is ON — blue indicates it is (see

Figure 8.5)

https://developers.google.com/custom-search/v1/overview
https://cse.google.com/all

Aesthetic Programming

196

You should now finish modifying the settings, and now run the sample code with your
own API Key and engine ID.

Figure 8.5: Google Custom Search interface - configuring search settings

APIs

Snippets of Net Art Generator concerning the APIs:

let url = "https://www.googleapis.com/customsearch/v1?";1

// register: https://developers.google.com/custom-search/json-api/v1/overview2

let apikey = "INPUT YOUR OWN KEY";3

//get the searchengine ID: https://cse.google.com/all (make sure image is on)4

let engineID = "INPUT YOUR OWN";5

let query = "warhol+flowers"; //search keywords6

//check other parameters: https://tinyurl.com/googleapiCSE7

let searchType = "image";8

let imgSize ="medium";9

let request; //full API10

11

8. Que(e)ry data

197

To enable easy modification, we have set the search parameters as a global variable, which
includes the required URL, API key, search engine ID, search type, image size, and query (see
Lines 1-9). These are the parameters used to filter the search results, and more variables can
be added if required/desired.

A web API is simply a long URL request = url + "key=" + apikey + "&cx=" + engineID +
"&imgSize=" + imgSize + "&searchType=" + searchType + "&q=" + query; that includes all the
credentials as well as the items you want to search for and the necessary filters (it looks like
this: https://www.googleapis.com/customsearch/v1?
key=APIKEY&cx=SEARCHID&imgSize=medium&searchType=image&q=warhol+flowers).

The key syntax is loadJSON() (in the Line 21 within the function fetchImage()) to submit a
“request” in the form of a URL to the image provider after which you need to wait for the
returned JSON file with a list of results. The callback function gotData() (see Line 24) is to
further process and que(e)ry the data returned.

Que(e)rying data

Figure 8.6 below shows the JSON file format, but it includes a lot of information that you
might not need. You therefore need to understand the file structure and locate the data that
you want to process. Understanding the returned data file is part of the process of
que(e)rying data as different providers and platforms structure their data differently.

function setup() {12

 …13

 fetchImage();14

}15

16

function fetchImage() {17

 request = url + "key=" + apikey + "&cx=" + engineID + "&imgSize=" + imgSize +18

 "&q=" + query + "&searchType=" + searchType;19

 console.log(request);20

 loadJSON(request, gotData); //this is the key syntax to make API request21

}22

23

function gotData(data) {24

 getImg = data.items[0].image.thumbnailLink;25

 console.log(getImg);26

}27

https://www.googleapis.com/customsearch/v1?key=APIKEY&cx=SEARCHID&imgSize=medium&searchType=image&q=warhol+flowers

Aesthetic Programming

198

Figure 8.6: Web API data structure I

In the web console, look for a URL (with your own API key and search engine ID) that starts
with “https” and ends with “warhol+flowers” (something like this:
https://www.googleapis.com/customsearch/v1?
key=APIKEY&cx=SEARCHID&imgSize=medium&searchType=image&q=warhol+flowers).
Then simply click it and you will see how the data is structured in the JSON file format in a
web browser (see Figure 8.6). There are more parameters you can set in order to select
more specific forms of data such as image size, image color type, image dominant color, and
so on. The API that we have used in the sample code demonstrates minimal settings. 16

Cross-Origin Resource Sharing

In contrast to text, requesting, receiving, and loading images from a web domain (or
multimedia formats such as video as well as fonts) will incur security issues, known in the
field as Cross-Origin Resource Sharing (CORS). For this chapter, and in the corresponding
example, the sample code is hosted on a local machine with a local server running in the
Atom code editor, but the API request, and the corresponding data is hosted elsewhere. The
CORS issue related to network requests is designed to prevent “unsafe HTTP requests.” 17
In an industry environment, it is usually configured on the web server side to handle the
network requests. But for demonstration purposes, we have used the thumbnail images
(data.items[0].image.thumbnailLink;) generated by the search provider instead of loading

https://www.googleapis.com/customsearch/v1?key=APIKEY&cx=SEARCHID&imgSize=medium&searchType=image&q=warhol+flowers

8. Que(e)ry data

199

original web images hosted on various servers with a variety of settings (more about the
data structure in the next section). We simply load the images by using createImg() or
loadImage() (see Figures 8.2 & 8.3).

Data structure

Figure 8.6 demonstrates how you can indicate specific data in a JSON file. There is the line
data.items[0].image.thumbnailLink; (see Line 33 from the full source code), which gets the
returned object specified (the image URL) from the JSON file. The term “data” refers to all
the objects returned using the callback function function gotData(data){}. items[0] which
points to the first data object (using the array concept in which the first position on the index
is 0). The dot syntax allows you to navigate to the object image and thumbnailLink under
items[0] (“data > items[0] > image > thumbnailLink”). Note that this hierarchy is specific to
this API because other web APIs might structure their data differently.

To learn more about the JSON file, you can navigate through other data objects such as
“queries > request > 0” that would show, for example, how many results are found on the
image search, which search terms have been processed, and how many data objects were
returned (See Figure 8.7). In the sample code, we start with only the top 10 search items,
but you can configure the parameter startIndex to get the last 10 images out of 110 million.
Furthermore, you can find the data for each specific image returned in the form of an array,
such as the title, and the corresponding snippet of the page content under items in the
JSON file.

Figure 8.7: Web API data structure II

We can now summarize the general process of working with web APIs and getting data from
an online platform:

– Understanding the web API’s workflow.
– Understanding the API specification that indicate which data and parameters are available.
– Understanding the file format (such as JSON) returned by the web API.
– Registering and getting the API key(s) and any other, additional configuration is needed.

Aesthetic Programming

200

Given our specific example nag and the sample code, we want to also reflect on increasingly
prevalent API practices. Although Google has provided the API to access the data, it should
be remembered that the amount is limited to 100 free API requests for all units from
business to non-profit organizations, and the actual data is collected from the public, and
people have no access to the specific algorithm which selects, prioritizes, includes/excludes
and presents the data. This raises serious questions about the degree of openness,
transparency, accessibility, and inclusivity of API practices. 18

Exercise in class

Figure 8.8: The API request and response logic

1. Referring to Figure 8.8, can you recap what has been requested and received
through the web API? (Or, more conceptually, which forms of control and exchange
are performed?)

2. Change your own query strings. The current keywords are “warhol flowers,” but
note that the program doesn’t understand spaces between characters and
therefore the keywords need to be written as “warhol+flowers.”

3. Refer back to the section on APIs above, examine the search filtering rules with
different parameters 16 to get a sense of the categorization of images, such as
the parameter of “image color type”. The URL parameters are separated by an “&”
symbol as follows: https://www.googleapis.com/customsearch/v1?
key=APIKEY&cx=SEARCHID&imgSize=medium&searchType=image&q=warhol+flowers.

4. Study the JSON file to get an overview of data query, such as how many search
returns and the query performance. Then modify the sketch to get other data such
as the text showing in the web console beyond the image URL.

https://developers.google.com/custom-search/v1/cse/list#parameters
https://www.googleapis.com/customsearch/v1?key=APIKEY&cx=SEARCHID&imgSize=medium&searchType=image&q=warhol+flowers

8. Que(e)ry data

201

LoadPixels()

Figure 8.9: An illustration of how an image is made up of pixels

For this sample sketch on an image file, only one color in the image will be selected and
processed. This means that the program will randomly locate and pick any pixel from the
image. The function pixels also analyzes and retrieves the color of the selected pixel,
specifically the RGB color values that are used to draw the colored line on screen (see Figure
8.9 above as an illustration but in reality the pixel size is much smaller).

The colored lines (see Figures 8.2 and 8.3) are not randomly drawn, but they are based on
the x and y coordinates of the pixel selected, and each line is drawn along the whole y axes
from that point. Apart from the position, the color of the line is based on the RGB values of
the selected pixel as well. Combining both the position and the color leads to something like
a color visualization of the image, an abstract painting unfolding over time.

Each pixel selected contains color information that is the R (red), G (green), B (blue) and A
(alpha) values. This is how the data is being stored in the pixels’ one dimensional array:

Aesthetic Programming

202

Figure 8.10: An illustration of the breakdown of each pixel by Integrated Digital Media, NYU. Image from
https://idmnyu.github.io/p5.js-image/ 19

Let’s make a variable loc for storing pixel information. Each pixel position needs to be clearly
located so that a line can be drawn at the right position. Following the function Pixels(), each
pixel takes up four locations: The first pixel with the four RGBA values, then the second pixel
with another four RGBA values, and so on, and so forth:

pixels = [p1, p1, p1, p1, p2, p2, p2, p2, p3, p3, p3, p3…]

Therefore, the pixel consists of four different locations, each one storing a single value
relating to a single pixel. The formula for locating a specific pixel is loc = (img_x+img_y *
img.width)*4;. The use of img.pixels[loc], img.pixels[loc+1], img.pixels[loc+2] locates the
respective RGB values using the function pixels[].

function draw() {1

 if (getImg){ //takes time to retrieve the API data2

 loadImage(getImg, img=> { //callback function3

 //draw the frame + image4

 push();5

 translate(width/2-img.width-frameBorder, height/2-img.height-frameBorder);6

 scale(2);7

 if (!imgLoaded) {8

 noStroke();9

 fill(220);10

 rect(0, 0, img.width+frameBorder*2, img.height+frameBorder*2);11

 image(img,frameBorder, frameBorder);12

 imgLoaded = true;13

 }else{14

 //draw lines15

8. Que(e)ry data

203

The above code snippets is an excerpt of the parts about the color visualization. The logic in
the draw() function is to draw the grey outer frame and load the image in the center by using
the function translate() (see Line 6.)

The conditional structure if (getImg){} (see Line 2) is used to allow sufficient time to load the
JSON file and to be able to get the file path. Upon the successful loading of an image (with
the function loadImage() (see Line 3) and the corresponding callback function img), both the
outer frame and the image are drawn on the canvas.

The outer frame and the image are only drawn once with the update of the status imgLoaded
(see Line 8). For each frame drawn, the program will analyze the image’s pixels using the
syntax loadPixels() (see Line 16), picking the random pixel, and getting the corresponding
pixel’s x and y coordinates (using the variables img_x and img_y). It then gets the RGB color
values from the selected pixel using pixels[], then draws the colored line with the syntax
strokeWeight(), stroke() and line() (see Lines 24-28).

This section with the pixel and color elements shows how a computer processes and stores
an image as data which is fundamentally different from how humans see and perceive it. 20
It is also a way to demonstrate how an image object is being translated into numbers for
computation, which is somewhat similar to the example of face tracking in Chapter 4, “Data
capture,” in which a pixel can be located at a scale beyond human perception. These
examples may help you understand contemporary applications like tracking technology and
even computer vision that employs machine learning techniques in which images function as
training data (we return to this in Chapter 10, “Machine unlearning”).

 img.loadPixels();16

 img_x = floor(random(0, img.width));17

 img_y = floor(random(0, img.height));18

 /* The formula to locate the no: x+y*width, indicating a pixel19

 from the image on a grid (and each pixel array holds red, green, blue,20

 and alpha values), for more see here:21

 https://www.youtube.com/watch?v=nMUMZ5YRxHI */22

 loc = (img_x+img_y * img.width)*4;23

 strokeWeight(0.7);24

 //rgb values25

 stroke(color(img.pixels[loc], img.pixels[loc + 1], img.pixels[loc+2]));26

 line(frameBorder+img_x, frameBorder+img_y,27

 frameBorder+img_x, frameBorder+img.height);28

 }29

 pop();30

 });31

 }32

}33

Aesthetic Programming

204

Different types of bugs

In 1945, a dead moth was taped into Grace Murray Hopper’s computer log book to document
a problem with Harvard University’s Mark II Aiken Relay Calculator. 33 The “bug” 32 was
trapped between relay contacts and interrupted the program flow of the early
electromechanical computer. In early days of digital computers like ENIAC, with panel-to-
panel wiring cables and switches for programming, “debugging” was carried out by
unplugging cables. In this way, one could stop a program running in the middle to debug an
issue. Nowadays, debugging in an integral part of high level programming languages to
assist programmers to locate bugs by executing code line by line. At this stage – as you have
developed your programming skills and your programs are becoming more complex – it is
important to understand, identify, and locate errors or bugs (as part of the debugging
process 21) so that you can build a workable sketch.

Paying close attention to errors/bugs is a vital part of learning to program as this allows
programmers to gain insights into program operations, such as at which point the program
produces unexpected results and causes failure. Are you able to identify whether the errors
are from your own code, or from parsing the data while it is running, or from other third
parties like the image search engine when you debug your sketch? (Programs are getting
more complex because there are more agents involved.) Are they minor errors or critical
errors (that stop your program from running)? Are they syntactic, runtime, or logical errors
(as explained below)?

Broadly speaking, there are three types of errors:

1. Syntax errors are problems with the syntax, also known as parsing errors. These errors —
such as spelling errors or missing a closed bracket — tend to be easier to catch, and can
be detected by a parser (in this case the browser).

SyntaxError: missing) after argument list

2. Runtime errors happen during the execution of a program while the syntax is correct.
The web browser console is the place to understand these errors. Below shows two
examples of runtime errors:
If we remove the conditional checking if (getImg){} within the draw() function, the
program cannot initially load the image as it takes some time to process the web API
request. The error will keep on showing in the web console until the program successfully
parses the image URL.

p5.js says: loadImage() was expecting String for parameter #0 (zero-based
index), received an empty variable instead. If not intentional, this is often a
problem with scope: https://p5js.org/examples/data-variable-scope.html at
about:srcdoc:94:6. https://github.com/processing/p5.js/wiki/Local-server
Wrong API key sent to the server. It is a more critical error because the program
cannot extract the image and display it on the screen:

https://p5js.org/examples/data-variable-scope.html
https://github.com/processing/p5.js/wiki/Local-server

8. Que(e)ry data

205

p5.js says: It looks like there was a problem loading your json. Try checking if the
file path is correct, or running a local server.

3. Logical errors are arguably the hardest errors to locate as they deal with logic not
syntax. The code may still run perfectly, but the result is not what was expected. This
indicates a discrepancy between what we think we asked the computer to do and how it
actually processes the instructions. The web console is a good place to be notified of
errors or test whether the code is running as we expected. When solving errors, it is
important to identify exactly where they occur, i.e. which block or line of code contains
the mistake by using console.log() (or print() in p5.js). Test and run the various parts of
the program step by step, then try to identify the error types, and fix them accordingly.

While()

The discussion of errors brings us back to what we mean by query and que(e)ries: asking
whether something like data is valid or accurate, but also to questioning how it is deemed to
be valid or accurate in the first place. There is a danger of self-fulfilling prophecy here unless
further questions are asked about data, and the conditions of its operation. When it comes to
big data, for instance, there is a tendency to think of unstructured data as raw and
unmediated, whereas in practice there is always some additional information about its
composition, not least derived from the means by which it was gathered in the first place. A
more “forensic” approach reveals how the data was selected, preprocessed, cleaned, and so
on. This is in keeping with the way that Eyal Weizman and Thomas Keenan define “forensis”
as more than simply the scientific method of data-gathering or capture:

“Forensics is, of course, not simply about science but also about the presentation of
scientific findings, about science as an art of persuasion. Derived from the Latin
‘forensis,’ the word’s root refers to the ‘forum,’ and thus to the practices and skill of
making an argument before a professional, political or legal gathering. In classical
rhetoric, one such skill involved having objects address the forum. Because they do
not speak for themselves, there is a need for a translation, mediation, or
interpretation between the — ‘language of things’ — and that of people.” 22

Using forensics it is possible not only to detect features or patterns in data, but also to
generate new forms, new shapes, or arguments: to allow data to speak for itself — as witness
in a court of law, for instance — and to uncover aspects of what is not directly apparent in the
material. These principles are fundamental to the work of Forensic Architecture not least
(which Weizman is part of), 23 and the practice of forensics in this case refers to the
production and presentation of architectural evidence within legal and political processes,
with data offering the ability to bear witness like spoken (human) testimony. In such cases
knowledge is produced in very precise ways rather than through the reductive
generalizations of typical algorithms that make sense of the big data in distorted ways.

Aesthetic Programming

206

As noted in the introduction, simple operations such as search or feeds order data and reify
information in ways that are clearly determined by corporate interests. The politics of this
resonates with what Antoinette’s Rouvroy’s phrase “algorithmic governmentality” (the
second part of which combines the terms government and rationality) to indicate how our
thinking is shaped by various techniques. 24 According to Rouvroy, knowledge is increasingly
delivered “without truth” thanks to the increasing use of machines that filter the latter using
search engines that have no interest in the content as such or how knowledge is generated.
The concern is that algorithms are starting to define what counts as knowledge, a further
case of subjectification (the process through which we become subjects). Rouvroy claims:
“The new, “truth regime,” evolving in real-time, may appear “emancipatory” and
“democratic” (with regards to “old” authorities, hierarchies and suspiciously rigid categories
and measures), but the “subjects” it produces are “multitudes without alterity.” 25 This
produces human subjects in relation to what algorithms understand about our intentions,
gestures, behaviors, habits, opinions, or desires, through a process of aggregating massive
amounts of data. 1 Rouvroy calls this “personalization without subjects” and identifies the
mistake of focusing on concerns about personal data when what is at stake are the
processes of subjectification by data mining and profiling, by means of
algorithmic governmentality.

If you keep these ideas in mind Cornelia Sollfrank’s project Female Extension (mentioned at
the beginning of this chapter) becomes all the more powerful, as it hacks the process of
personalization. The male domination of the “art operating system” is tricked into believing
its own liberal agenda of inclusion and yet the whole scenario is fake. When it comes to
Google and its operations, we can see that although it provides its API for experimentation, it
only does so under restrictions: by limiting requests for public and non-profit/educational
use, and by only revealing some of the available parameters in which the logic of how the
search data (as knowledge) is presented algorithmically is still unknown to the public. nag
emphasizes the querying of data, not only the execution of the data request and its
response, but also by questioning the perpetuation of cultural “norms.” In Algorithms of
Oppression, Safiya Umoja Noble, for example, demonstrates how racism is reinforced
through hegemonic search results:

“Search happens in a highly commercial environment, and a variety of processes
shape what can be found; these results are then normalized as believable and often
presented as factual [and] become such a normative part of our experience with
digital technology and computers that they socialize us into believing that these
artifacts must therefore also provide access to credible, accurate information that is
depoliticized and neutral.” 26

The organization of information is structured through the process of generalization.
Concerning advanced data-mining processes and statistically modelling, Adrian Mackenzie
speaks of the various kinds of generalization at work that allow for the development of
machine learning. 27 It is important to recognize how all techniques of pattern recognition
and statistics “generate statements and prompt actions in relation to instances of individual
desire” and they transform, construct, and impose shape on data, in order to then “discover,
decide, classify, rank, cluster, recommend, label or predict” something or other. 28 The
assumption, as Mackenzie points out, is that everything that exists is reducible to stable and

8. Que(e)ry data

207

distinct categorization: “In all cases, prediction depends on classification, and classification
itself presumes the existence of classes, and attributes that define membership of
classes.” 29 This presumption of stable classes and classifications is one of the main
problems that we wish to query here, as if the world was organized that way too (when it is
clearly not). The difficulty lies as to what extent any model is accurate or valid.

To que(e)ry data in this way throws into further question how data is collected, stored,
analyzed, recommended, ranked, selected, and curated in order to understand the broader
social and political implications, not least how categorizations such as gender and race are
normalized and hegemonized. To query the power structures of materials from a feminist
standpoint is to understand “the mechanisms that shape reality” 30 and how they might
be reprogrammed.

MiniX: Working with APIs

(in a group)

Objectives:

– To design and implement a program that utilizes web APIs. 31
– To learn to collaboratively code and conceptualize a program.
– To reflect upon the processes of data parsing using an API, paying attention to

the registration, availability, selection, and manipulation of data.

Get additional inspiration:

– Queer Motto API by Winnie Soon and Helen Pritchard (2021),
http://siusoon.net/queer-motto-api

– Open Weather with code example, https://www.youtube.com/watch?
v=ecT42O6I_WI.

– Other weather API example with code example,
https://p5js.org/examples/hello-p5-weather.html.

– New York Times with code example, https://www.youtube.com/watch?
v=IMne3LY4bks&list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r&index=9.

– Giphy images with code example, https://www.youtube.com/watch?
v=mj8_w11MvH8&index=10&list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r.

– Wikipedia API, https://www.youtube.com/watch?v=RPz75gcHj18.
– Twitter API and Twitter Bot with code example, http://shiffman.net/a2z/twitter-

bots/. (Note that Twitter has tightened the rules for registering the API and you
need to have a convincing proposal as well as the process can be lengthy.)

– Search many other kinds of API, https://www.programmableweb.com/.

Tasks (RunMe):

This is a relatively complex exercise that requires you to:

http://siusoon.net/queer-motto-api
https://www.youtube.com/watch?v=ecT42O6I_WI
https://p5js.org/examples/hello-p5-weather.html
https://www.youtube.com/watch?v=IMne3LY4bks&list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r&index=9
https://www.youtube.com/watch?v=mj8_w11MvH8&index=10&list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r
https://www.youtube.com/watch?v=RPz75gcHj18
http://shiffman.net/a2z/twitter-bots/
https://www.programmableweb.com/

Aesthetic Programming

208

– Design a program that utilizes at least one web API, including:
– Finding available web APIs and the data that you want to explore.
– Understanding the available data: the data file format and the

API’s specifications.
– Deciding which data fields you want to choose to explore and experiment with.
– Utilizing the web API and the corresponding data in your program. (Please

reserve more time if you are getting data from other platforms, as the
registration process can take a long time.)

Questions to think about (ReadMe):

– What is the program about? Which API have you used and why?
– Can you describe and reflect on your process in this miniX in terms of acquiring,

processing, using, and representing data? How much do you understand this
data or what do you want to know more about? How do platform providers sort
the data and give you the requested data? What are the power relations in the
chosen APIs? What is the significance of APIs in digital culture?

– Try to formulate a question in relation to web APIs or querying/parsing processes
that you would like to investigate further if you had more time.

Required reading

– David Gauthier, Audrey Samson, Eric Snodgrass, Winnie Soon, and Magda Tyżlik-Carver,
“Executing,” in Nanna Thylstrup, Daniela Agostinho, Annie Ring, Catherine D’Ignazio and
Kristin Veel, eds., Uncertain Archives (Cambridge, MA: MIT Press, 2021).

– Daniel Shiffman, “Working with data - p5.js Tutorial,” The Coding Train (10.1, 10.4 - 10.10),
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r.

– Eric Snodgrass and Winnie Soon, “API practices and paradigms: Exploring the
protocological parameters of APIs as key facilitators of sociotechnical forms of exchange],”
First Monday 24, no.2 (2019), https://doi.org/10.5210/fm.v24i2.9553.

Further reading

– Jonathan Albright, “The Graph API: Key Points in the Facebook and
Cambridge Analytica Debacle,” Medium (2018),
https://medium.com/tow-center/the-graph-api-key-points-in-
the-facebook-and-cambridge-analytica-debacle-b69fe692d747.

– Taina Bucher, “Objects of intense feeling: The case of the Twitter
API,” in Computational Culture , Nov 27 (2013),
http://computationalculture.net/article/objects-of-intense-
feeling-the-case-of-the-twitter-api.

– Christoph Raetzsch, Gabriel Pereira, and Lasse S. Vestergaard,
“Weaving Seams with Data: Conceptualizing City APIs as Elements
of Infrastructures,” Big Data & Society, Jan (2019),
https://journals.sagepub.com/doi/full/10.1177/205395171982
7619.

https://www.youtube.com/playlist?list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r
https://doi.org/10.5210/fm.v24i2.9553
https://medium.com/tow-center/the-graph-api-key-points-in-the-facebook-and-cambridge-analytica-debacle-b69fe692d747
http://computationalculture.net/article/objects-of-intense-feeling-the-case-of-the-twitter-api
https://journals.sagepub.com/doi/full/10.1177/2053951719827619

8. Que(e)ry data

209

Notes

1. Wendy Hui Kyong Chun, Updating to
Remain the Same: Habitual New
Media (Cambridge, MA: MIT Press, 2016).

2. Big data is referred to as “Big Dick Data”
by Catherine D’Ignazio and Lauren Klein,
to mock big data projects that are
characterized by “masculinist, totalizing
fantasies of world domination as enacted
through data capture and analysis,” see
“The Numbers Don’t Speak for
Themselves,” in Data Feminism
(Cambridge, MA, MIT Press 2020), 151.

3. René König and Miriam Rasch, “Reflect and
Act! Introduction to the Society of the
Query Reader,” in René König and Miriam
Rasch, eds. Society of the Query:
Reflections on Web Search
(Amsterdam: The Institute of Network
Cultures, 2014), https://networkcultures.
org/query/2014/04/23/reflect-and-act-i
ntroduction-to-the-society-of-the-query-re
ader/.

4. See Ashok K. Chandra and David Harel,
“Computer Queries for Relational Data
Bases,” Journal of Computer and
System Sciences 21, no.2 (1980): 156-178;
Winnie Soon, Executing Liveness: An
Examination of the Live Dimension of
Code Inter-actions in Software
(Art) Practice , PhD dissertation, Aarhus
University (2016); Eric Snodgrass and
Winnie Soon, “API practices and
paradigms: Exploring the protocological
parameters of APIs as key facilitators of
sociotechnical forms of exchange,” First
Monday 24, no.2 (2019).

5. Since 1997, there are five different
versions of nag that have been realized
by seven programmers at various stages
of the project. In 2003, Version 5 started
using images from Google search, but this
became broken in 2015. The current
version, 5b was updated in 2017 by Winnie
Soon, and this is the version that officially
utilized Google Image Search API
according to the specification. See htt
p://net.art-generator.com/.

6. Extension was sponsored by the Galerie
der Gegenwart (Gallery of Contemporary
Art) of the Hamburger Kunsthalle
(Hamburg Art Museum). Despite the
disproportionate number of submissions
by female artists, only male artists were
selected as finalists. After the decision
was announced, Sollfrank went public.
Some documentation for Female
Extension can be found at http://www.a
rtwarez.org/femext/index.html.

7. Old Boys Network (OBN) is widely
regarded as the first international
Cyberfeminist alliance and was founded in
1997, in Berlin. See https://www.obn.or
g/.

8. Sollfrank employs Thomas Wulffen’s
phrase, in Cornelia Sollfrank, “Hacking the
Art Operating System,” interviewed by
Florian Cramer, Chaos Computer Club,
Berlin (2001).

9. See https://p5js.org/reference/#/p5/l
oadJSON.

10. See https://p5js.org/reference/#/p5/l
oadImage.

11. See https://p5js.org/reference/#/p5/i
mage.

12. See the reference guide of loadPixels(), ht
tps://p5js.org/reference/#/p5/loadPi
xels.

13. To request an API key from other image-
related platforms, such as Giphy and
Pexels, see https://support.giphy.com/
hc/en-us/articles/360020283431-Reque
st-A-GIPHY-API-Key and https://www.pex
els.com/api/.

14. See https://developers.google.com/cu
stom-search/v1/overview.

15. See https://cse.google.com/all.
16. There are other optional parameters, see

https://developers.google.com/custo
m-search/json-api/v1/reference/cse/lis
t#parameters.

17. See https://w3c.github.io/webappsec-c
ors-for-developers/.

18. Snodgrass and Soon, “API Practices and
Paradigms.”

19. A tutorial on Image Processing in p5.js,
see https://idmnyu.github.io/p5.js-imag
e/.

20. Such a breakdown of an image into color
scale pixels was also used in electronic
television transmission in the mid-1930s,
but in this case data was sent manually by
a telegraph operator via the medium of
Wire or Radio. See George H, Eckhardt,
Electronic television (Chicago:
Goodheart-Willcox Company,
Incorporated, 1936), 48-50.

21. There is a debugging tutorial created for
the p5.js contributor conference by Jason
Alderman, Tega Brain, Taeyoon Choi and
Luisa Pereira, see: https://p5js.org/lear
n/debugging.html.

22. Thomas Keenan and Eyal Weizman,
Mengele’s Skull: The Advent of a
Forensic Aesthetics (Berlin: Sternberg
Press, 2012); see also Matthew
Kirschenbaum, Mechanisms: New
Media and the Forensic Imagination
(Cambridge, MA: MIT Press, 2008).

23. Forensic Architecture, directed by Eyal
Weizman, is a research agency based at
Goldsmiths, University of London, who
undertake advanced spatial and media
investigations into cases of human rights
violations, with, and on behalf of,
communities affected by political
violence, human rights organizations,
international prosecutors, environmental
justice groups, and media organizations.
See https://forensic-architecture.org/.

24. The idea of “governmentality” is derived
from the work of Michel Foucault,
especially his lectures at the Collège de
France 1982-1983. In Rouvroy’s lecture
“Algorithmic Governmentalities and the
End(s) of Critique” at the Institute for
Network Cultures (October 2013) she
makes the argument that critique is not
possible without access to a fuller
understanding of how knowledge is being
produced.

25. See Antoinette Rouvroy, “Technology,
Virtuality and Utopia: Governmentality in
an Age of Autonomic Computing,” in
Mireille Hildebrandt and Antoinette
Rouvroy, eds., Autonomic Computing
and Transformations of Human
Agency (London: Routledge, 2011).

26. Safiya Umoja Noble, Algorithms of
Oppression: How Search Engines
Reinforce Racism (New York: New York
University Press, 2018), 24-25.

27. Adrian Mackenzie, “The Production of
Prediction: What Does Machine Learning
Want?” European Journal of Cultural
Studies 18, nos.4-5 (2015): 431.

28. Mackenzie, “The Production of Prediction”,
432.

29. Mackenzie, “The Production of Prediction”,
433.

30. Cornelia Sollfrank, ed. Beautiful
Warriors: Technofeminist Praxis in
the Twenty-First Century (New York:
Autonomedia/Minor Compositions, 2019),
6.

31. For those APIs that require the OAuth 2.0
authorization, a standard protocol for
authorization, you might need Node.js (ht
tps://nodejs.org/en/) to handle the
server-client authentication. At the
beginner level, it is recommended to look
for web APIs with the registration of API
keys. See what Node is for 15.1 and 15.2 (ht
tps://www.youtube.com/watch?v=RF5
_MPSNAtU&index=1&list=PLRqwX-V7Uu
6atTSxoRiVnSuOn6JHnq2yV), and the
OAuth 2.0 Authorization Framework that is
proposed by Internet Engineering Task
Force in 2012 (https://tools.ietf.org/htm
l/rfc6749).

https://networkcultures.org/query/2014/04/23/reflect-and-act-introduction-to-the-society-of-the-query-reader/
http://net.art-generator.com/
http://www.artwarez.org/femext/index.html
https://www.obn.org/
https://p5js.org/reference/#/p5/loadJSON
https://p5js.org/reference/#/p5/loadImage
https://p5js.org/reference/#/p5/image
https://p5js.org/reference/#/p5/loadPixels
https://support.giphy.com/hc/en-us/articles/360020283431-Request-A-GIPHY-API-Key
https://www.pexels.com/api/
https://developers.google.com/custom-search/v1/overview
https://cse.google.com/all
https://developers.google.com/custom-search/json-api/v1/reference/cse/list#parameters
https://w3c.github.io/webappsec-cors-for-developers/
https://idmnyu.github.io/p5.js-image/
https://p5js.org/learn/debugging.html
https://forensic-architecture.org/
https://nodejs.org/en/
https://www.youtube.com/watch?v=RF5_MPSNAtU&index=1&list=PLRqwX-V7Uu6atTSxoRiVnSuOn6JHnq2yV
https://tools.ietf.org/html/rfc6749

Aesthetic Programming

210

32. The term “bug” was coined by Thomas
Edison in 1873 and it was used to describe
a technical problem, like a fault in the
connections of an electric apparatus. See
Alexander Magoun and Paul Israel, “Did
You Know? Edison Coined the Term ‘Bug’,”
IEEE Spectrum (August 1, 2013), http
s://spectrum.ieee.org/the-institute/iee
e-history/did-you-know-edison-coined-the
-term-bug.

33. The log book has been archived at the
National Museum of American History, htt
ps://americanhistory.si.edu/collection
s/search/object/nmah_334663.

https://spectrum.ieee.org/the-institute/ieee-history/did-you-know-edison-coined-the-term-bug
https://americanhistory.si.edu/collections/search/object/nmah_334663

9. Algorithmic procedures

211

9. Algorithmic procedures

9. Algorithmic procedures

setup()

MiniX:
Flowcharts

start()

While()

Discussion in class

Flowcharts

Exercise in class

Exercise 1Flowcharts
as an artistic medium

Exercise 2Notes

Required reading

Further reading

213

214

214

215

217

217
217
218

220

222

223

223

224

Contents

– setup()

– start()

– Discussion in class

– Flowcharts

– Exercise in class

– Exercise 1
– Exercise 2

– Flowcharts as an artistic medium

– While()

– MiniX: Flowcharts

– Required reading

– Further reading

– Notes

9. Algorithmic procedures

213

setup()

The pioneer computer scientist and programmer Grace Murray Hopper famously described
planning skills in programming as “just like planning a dinner.” 1 Programming is similar to
cooking inasmuch as it requires patience and the ability to manage details and
ingredients. 2 That an algorithm or recipe can be written down in a cookbook or codebook
so the actions can be followed, shared and repeated, is something that the programmer
Donald Knuth also identified in his The Art of Computer Programming (1968), to stress
the aesthetic dimension of programming by analogy to recipes in a cookbook. 3 Indeed
both coding and cooking share common attributes including how sources are selected,
actions applied, and how transformations take place. These comments, and Knuth’s writing
style, set the tone for this chapter in terms of subject matter, but also as far it lays out
algorithmic instructions for the reader: the “procedures for reading,” 4 as he puts it. Here
are some snippets:

“1. Begin reading this procedure, unless you have already begun to read it. Continue
to follow the steps faithfully; […] 5. Is the subject of the chapter interesting you? If
so, go to step 7; if not, go to step 6. 14. Are you tired? If not, go back to step 7; 15.
Go to sleep. Then, wake up, and go back to step 7.” 5

The example serves to emphasize that we tend to follow instructions faithfully. However, we
might also observe that algorithms are more than simply steps and procedural operations
as there are wider cultural and political implications, not least in terms of whether we decide
to interpret them on our own terms. In this sense, like cooking, algorithms express cultural
differences, and matters of taste, even aesthetics. Extending the analogy to other cultural
practices, Knuth quotes Ada Lovelace: “The process of preparing computer programs for a
digital computer is especially attractive, not only because it can be economically and
scientifically rewarding, but also because it can be an aesthetic experience much like
composing poetry or music.” 6

In this chapter we will discuss some of these recipe-like algorithmic procedures and how they
describe the steps and operations of a program, and less about the syntax of code. An
algorithm differs from lines of code in that it is not dependent on specific software and
libraries. It is simply a process or set of rules to be followed in calculations, or other problem-
solving operations especially by a computer. 7 An algorithm is a skeleton of how a program
operates and shows the operational steps which, ideally, can be implemented by any
“Turing-complete” machine, thereby computationally universal, and able to solve any
computation problem. 8 In other words, an algorithm demonstrates the systematic
breakdown of procedural operations to describe how an operation moves from one step to
the next. It’s only like a recipe in a general sense in that it is a set of step-by-step
instructions, but the analogy only goes so far, as recipes lack the exactness and
reproducibility of Turing-completeness to operationally solve computational problems by
recognizing and manipluating data according to given instructions.

Aesthetic Programming

214

start()

In Chapter 3, “Infinite loops,” we briefly introduced the computational diagram drafted by Ada
Lovelace in 1842, often referred to as the world’s first computer program. 9 (See Figure 3.2)
The published diagram and Lovelace’s extensive notes demonstrate the sophisticated step-
by-step operations required to solve mathematical problems. The instructions are designed
to be automatically executed by a machine. As she put it, “I want to put something about
Bernoulli’s numbers, in one of my Notes, as an example of how the implicit function may be
worked out by the engine without human head & hands first. Give me the necessary
formulae.” 10 The formulae are expanded into algorithmic procedures in the diagram.

In this chapter we will build on “diagramming,” particularly the use of flowcharts to elaborate
the practical and conceptual aspects of algorithmic procedures. Flowcharts, “Flow of the
chart -> chart of the flow” 11 , have been considered a fundamental explanatory tool since
the early days of computer programming. One of their common uses is to illustrate
computational operations and data processing for programming by “converting the
numerical method into a series of steps.” 12 But flowcharts can also be considered to be
representational diagrams which can also be used to communicate complex logic between
programmers and others involved in software production. This is good practice of course,
especially for beginners in a learning context, and is essential for communicating ideas in
ways that can be easily understood by others. Indeed programming is not necessarily a
solitary activity, 13 as we have discussed, and can be a social, and communicative practice
that exposes relations between different entities exemplified by diagramming. Moreover
most software applications are not developed by a single programmer but are organized
into tasks that are tackled collaboratively by programmers, as for instance when maintaining
or debugging a program made by someone else. Collaborative workflows lends themselves
to flowcharts.

Discussion in class

– Can you give an everyday example (detailing the computational logic) of an algorithm that
you have used or experienced?

– Can you sketch an algorithmic procedure? For example, how your social media feeds
are organized?

– Based on the assigned reading from Taina Bucher, can you list some of the properties of
algorithms? How are they both technical and social?

– We discussed rule-based systems in Chapter 6, “Auto-generator,” how does that differ from
how we are now discussing procedurality in this chapter?

9. Algorithmic procedures

215

Flowcharts

Conventionally, each step in a flowchart is represented by a symbol and connecting lines
that indicate the flow of logic towards a certain output. The symbols all have different
meanings. Below we outline the basic components for drawing a flowchart:

– Oval: Indicates the start or end point of a program/system. (But this requires further
refection on whether all programs have an end.)

– Rectangle: Represents the steps in the process.
– Diamond: Indicates the decision points with “yes” and “no” branches.
– Arrow: Acts as a connector to show relationships and sequences, but sometimes an arrow

may point back to a previous process, especially when repetition and loops
are concerned.

Figure 9.1 shows the flowchart for the program Vocable Code we examined in Chapter 7. The
flowchart shows the high-level logic and sequences, and elaborates its details in plain
English. This flowchart uses symbols, lines, and text to communicate to a wider public as well
as the readers of this book.

Flowcharts are used across many disciplines, both technical and artistic. For example, they
are relatively common in business contexts and provide insight into, and communicate how
various processes or workflows are efficiently organized. In philosophy, diagrams have been
used to produce new kinds of thought processes and relations, for example Gilles Deleuze
and Félix Guattari refer to them as “abstract machines.” 14 We will return to these ideas in
more detail at the end of the chapter. Similarly, in our teaching, we have used flowcharts as a
means of deconstructing writing as well as to break down an argument in an essay structure,
as a way to formulate new ideas and structure. Diagrams are good tools, or rather
“machines,” that help us think through different procedures and processes, and this
approach has evidently informed our use of flowcharts to introduce each chapter of
this book.

In this chapter’s miniX, you will be asked to collaboratively produce a flowchart for a new
project idea. By now you are probably more confident building a more complex program that
incorporates a variety of syntax, so organization presents itself as a more challenging and
necessary task. We have found that one of the difficulties people face is how to combine and
link various functions, and to break down a task into smaller, sequential steps. We think a
flowchart is an effective means of formulating ideas, generating discussion, observing
relations, predicting technical challenges, and providing a means for cooperation on a
project. If tasks need to be sub-divided among a group, for instance, flowcharts can be used
to identify how a smaller task can be linked to others without losing site of the bigger picture.

Some of the challenges to turning an existing program into a flowchart include:

1. Translating programming syntax and functions into understandable, plain language.

2. Deciding on the level of detail on important operations to allow other people to
understand the logic of your program.

Aesthetic Programming

216

Figure 9.1: The flowchart for Vocable Code by Winnie Soon, graphic design by Anders Visti.

9. Algorithmic procedures

217

Exercise in class

Exercise 1

Let’s start with something that appears relatively simple, such as incorporating emojis
and paying attention to the variable names. The program code below references Multi
for emoticons (from Chapter 2, “Variable geometry”) and Vocable Code for naming
(from Chapter 7, “Vocable code”) to print various multispecies emoticons, one after
another, using a for-loop in the web browser console. The task is to draw a flowchart
based on this program:

Our previous use of this exercise in a classroom setting 15 resulted in different
drawings being produced and they became a resource for discussion around the
multiple purposes and meanings of flowcharts. 16

Exercise 2

Sorting is a common algorithm in digital culture, and recommendation lists on Spotify,
Amazon, and Netflix, will be familiar to you. Think about the “algorithmic procedures”
required to program something to solve the sorting task set below. 17

Generate a list of x (for example, x = 1,000) unique, random integers between two
number ranges. Then implement a sorting algorithm and display them in ascending
order. You are not allowed to use the existing sort() function in p5.js or JavaScript.
How would you approach this problem? Draw the algorithm as a flowchart with the
focus on procedures/steps, but not the actual syntax.

function setup() {1

 let multi = ['🐵','🐭','🐮','🐱'];2

 for (let species = 0; species < multi.length; species++) {3

 console.log(multi[species]);4

 }5

}6

/*output7

🐵8

🐭9

🐮10

🐱11

*/12

Aesthetic Programming

218

Flowcharts as an artistic medium

Beyond the pragmatic use of flowcharts, they can also be artistic objects in their own right,
as a “meta-medium for an aesthetics of social complexity,” as Paolo Cirio puts it. 18 An
example from 2005, is Google Will Eat Itself , 19 an artwork that auto-generates revenue
by hacking the Google AdSense, and was created by Cirio in collaboration with Alessandro
Ludovico and UBERMORGEN. 20 The project automatically triggers advertising clicks on
websites in order to receive micropayments from Google which are in turn used to buy
shares in Google: “We buy Google via their own advertisement! Google eats itself — but in the
end ‘we’ own it!”

Figure 9.2: Paolo Cirio, Alessandro Ludovico, and UBERMORGEN, Google Will Eat Itself / THE ATTACK
(2005). Courtesy of the artists.

The iterative (or cannibalistic) loop can clearly be seen in the diagram and echoes the
principle of the “strange loop:” forced “to eat its own tail” in Babbage’s words, altering its
own stored program and thereby offering the potential to generate new technical and
aesthetic forms, as previously mentioned with reference to the operations of the Analytical
Engine. Taken to its extreme, this type of loop is called a “forkbomb” and takes the shape of
a “denial-of-service” attack in which a computer process continuously replicates itself in order
to use up all available system resources, slowing down, or crashing the system due to
resource starvation. Reflected in the title of another project, UBERMORGEN’s The Project
Formerly Known as Kindle Forkbomb (2012), used a machine process that stripped
comments from YouTube videos. An algorithm then compiled the comments and added
titles, producing an e-book which was subsequently uploaded to the Amazon Kindle e-
commerce bookstore. 21 This process is sketched in the diagram, using an image of a
traditional printing press (see Figure 9.3), and further exploited in the installation version,
which combined the diagram on the gallery floor and physical objects (see Figure 9.4). 22 In
both cases, algorithmic procedures are in operation which mimic and mock the operational
logic of Amazon’s post-Gutenberg business model, the key principles of which are outlined on
the Kindle website: “Get to market fast. Make more money. Keep control.” 23

9. Algorithmic procedures

219

Figure 9.3: UBERMORGEN, The Project Formerly Known As Kindle Forkbomb (2013). Courtesy of
the artists

Figure 9.4: UBERMORGEN, The Project Formerly Known As Kindle Forkbomb (2013), mixed media
installation, part of the group exhibition “Systemics #2: As we may think (or, the next world library),” curated

by Joasia Krysa, Kunsthal Aarhus (September 21–December 31 2013). Courtesy of the artists and
Kunsthal Aarhus

Aesthetic Programming

220

While()

The shift of critical attention in software studies from source code to the operations of
algorithms, such as the sorting exercise above, reflects the rise of big data, and machine
learning (which we will discuss in the next chapter). Algorithms in this sense are there to
transform, construct, and shape data, in order to then classify, rank, cluster, recommend,
label, or even predict things. The concern is not how to build an efficient or optimized
algorithm, but to understand these operative dimensions better. In If… Then: Algorithmic
Power and Politics, Taina Bucher stresses that algorithms are “fundamentally productive
of new ways of ordering the world”. 24 So although the concept of algorithm is associated
with the disciplines of mathematics and computer science, the wider cultural field has taken
an interest in algorithms to explore the political consequences of procedural operations.

In What Algorithms Want , Ed Finn explores the concept of the algorithm as a “culture
machine” and argues that an algorithm “operates both within and beyond the reflexive
barrier of effective computability (Turing-completeness), producing culture at a macro-social
level at the same time as it produces cultural objects, processes, and experiences.” 25 It is
clear that algorithmic procedures play an important role in organizing culture, and
subjectivities, and it is not very easy to see through or describe them because they operate
beyond what we experience directly. They produce wider effects in the ordering of life.
Algorithms do things in the world and have real effects on machines and humans. In
Software Studies , Andrew Goffey clarifies this performative aspect:

“Algorithms act, but they do so as part of an ill-defined network of actions upon
actions, part of a complex of power-knowledge relations, in which unintended
consequences, like the side effects of a program’s behavior, can become critically
important. Certainly the formal quality of the algorithm as a logically consistent
construction bears with it an enormous power — particularly in a techno-scientific
universe — but there is sufficient equivocation about the purely formal nature of this
construct to allow us to understand that there is more to the algorithm than
logically consistent form.” 26

To take an example, in “Thinking Critically About and Researching Algorithms,” Rob Kitchin
explains how Facebook’s EdgeRank works in tandem with each users’ inputs, ordering the
results in personalized ways. These operations are not fixed, but are contextual and fluid, 27
part of larger, socio-technical assemblages, and infrastructures that are also constantly
evolving and subject to variable conditions. As such, although they appear to act somewhat
autonomously, algorithms need to be understood as relational, contingent and contextual
entities. 28 Diagrams such as the ones above can be used to help understand how
algorithms act as part of broader ecologies to highlight their agential power.

The diagrams we introduced in this chapter reveal this, and how apparently simple
operations such as searches or feeds (e.g. Facebook’s EdgeRank or Google’s PageRank)
order data, and reify information in ways that are determined by particular instances of
power. Matteo Pasquinelli’s essay “Google’s PageRank Algorithm: A Diagram of the Cognitive
Capitalism and the Rentier of the Common Intellect,” provides more detail by closely

9. Algorithmic procedures

221

Figure 9.5: Dean Kenning, Jackson 5
Flowchart (2017). A4, marker pen on

paper. Courtesy of the artist 31

examining the politics behind PageRank, the hypertextual algorithm that calculates the
importance of a given web page and its hierarchical position within search engine results. 29
His key point is that the algorithm reverses the centralized panopticon model of surveillance
and control, and instead offers a “bio-political machine” that captures time and living labor
through dataveillance. That PageRank is broadly based on citation indexes further
emphasizes its relevance for this book or any academic book, and how value is produced by
assessing the quality of links (much like the attention value produced by social media “likes”
and “friends,” or by the metrification of academic research outputs), resulting in new forms of
surplus value. The algorithm, or “value machine” in Pasquinelli’s words, and moreover is an
“abstract machine,” and diagram.

But what is a diagram? Leaving aside the use of
diagrams as functional tools, or for didactic purposes
that tend to simplify information (infographics are a
case in point), they also feature as a form of
expanded aesthetic practice, as we hope our
examples above have demonstrated. In this chapter
we have tried to reflect these practices in our use of
flowcharts as an experimental aesthetic form. We
already mentioned the idea of the diagram as an
“abstract machine” in the introduction, and this is
the phrase that Deleuze and Guattari use to reflect
that matter and form are able to transform
themselves: abstract machines exhibit
“morphogenesis” (a term we also know from Turing,
as mentioned in Chapter 5, “Auto-generator”). In this
way, diagrams instantiate future possibilities that are
not predetermined, but are open-ended, speculative
fictions. 30 Such descriptions might sound esoteric,
but the overall point is clear and even scientific (from
thermodynamics) in that there are things that have
morphogenetic possibilities, and systems are
continuously traversed by flows (vectors) of energy,
and matter that do not cancel but maintain
differences. What we end up with are speculative

geometries, self-organizing forms, and diagrammatic processes that reflect dynamic forces.
The diagram is an “image of thought,” in which thinking does not consist of problem-solving
but — on the contrary — problem-posing. We want to highlight these distinctive qualities in
this chapter which is somewhat at odds with the conventional descriptions of
algorithmic procedures.

But can we really think about flowcharts as diagrams in Deleuzian terms, as abstract
machines? Their general similarity, we would claim, is their ability to visualize problems and
helps us think them through in the process of that very visualization, a “picturing of thought”
as Deleuze would have it. In his “On the Diagram (and a Practice of Diagrammatics),” Simon
O’Sullivan provides a summary of this speculative approach:

Aesthetic Programming

222

“The diagram here is a strategy of experimentation that scrambles narrative,
figuration - the givens - and allows something else, at last, to step forward. This is
the production of the unknown from within the known, the unseen from within the
seen. The diagram, we might say, is a strategy for sidestepping intention from within
intention; it involves the production of something that then ‘speaks back’ to its
progenitor.” 32

Although referring to the practice of drawing rather than programming, we might hope for
something similar — although admittedly more pragmatic — in the way that abstraction is
invoked and the way that previously hidden aspects of programming might be “pictured” in
flowcharts. Like diagramming, programming is an abstract machine that does not function to
merely represent, but rather constructs a reality that is yet to come. As we discussed in
previous chapters, programming is a form of abstraction that requires the selection of
important details in which the implementation embodies the programmers’ thinking and
decision-making processes. In addition, algorithms themselves are decision-making machines
that are full of emergent, even predictive, potential. 33

In relation to the predictive practices of machine learning in particular, we might note that
Adrian Mackenzie, in his Machine Learners: Archaeology of a Data Practice , also uses
diagrams as an experiment in critical thinking to address the operations of machine learning.
Mackenzie explains that when it comes to machine learning, “coding changes from what we
might call symbolic logical diagrams to statistical algorithmic diagrams.” 34 Here he relies
on (and quotes) Deleuze’s suggestion that diagrams act “as a display of the relation
between forces that constitute power [and moreover] the diagram or abstract machine is
the map of relations between forces, a map of destiny, or intensity.” 35 This topic will be
continued in the next chapter, but for now we would like to stress that analyzing algorithms,
or source code for that matter, is not particularly illuminating in and of itself, unless the wider
assemblage of relations is exposed. Flowcharts are one way to do this, to map these
relations, as a means to facilitate critical thinking on the operations of programming.

MiniX: Flowcharts

Objective:

– To acquire the ability to break down a computer program into its definable parts
and relations.

– To organize and structure a computer program using a flowchart.
– To understand a flowchart as a means for communication and planning, and a

“machine” for critical thinking.
– To understand the concept of algorithms from both the computer science and

cultural perspectives.

9. Algorithmic procedures

223

Tasks (RunMe):

Individual:

– Revisit your previous mini exercises and select the most technically complex one.
– Draw a flowchart to represent the program (pay attention to which items you

select to present).

Group:

– Brainstorm two ideas for your final project (see next chapter’s MiniX).
– Draw two flowcharts to visualize the project’s algorithmic processes.

Questions to think about (ReadMe):

– What are the difficulties involved in trying to keep things simple at the
communications level whilst maintaining complexity at the algorithmic
procedural level?

– What are the technical challenges facing the two ideas and how are you going to
address these?

– In which ways are the individual and the group flowcharts you produced useful?

Required reading

– Taina Bucher, “The Multiplicity of Algorithims,” If…Then: Algorithmic Power and
Politics (Oxford: Oxford University Press, 2018), 19–40.

– Nathan Ensmenger, “The Multiple Meanings of a Flowchart,” Information & Culture: A
Journal of History 51, no.3 (2016): 321-351, Project MUSE, doi:10.1353/lac.2016.0013.

– Marcus du Sautoy, “The Secret Rules of Modern Living: Algorithms,” BBC Four (2015),
https://www.bbc.co.uk/programmes/p030s6b3/clips.

Further reading

– Ed Finn, “What is an Algorithm,” in What Algorithms Want
(Cambridge, MA: MIT Press, 2017), 15-56.

– Andrew Goffey, “Algorithm,” in Fuller, ed., Software Studies , 15-20.

– Daniel Shiffman, “Multiple js Files - p5.js Tutorial,” The Coding
Train, https://www.youtube.com/watch?v=Yk18ZKvXBj4.

https://www.bbc.co.uk/programmes/p030s6b3/clips
https://www.youtube.com/watch?v=Yk18ZKvXBj4

Aesthetic Programming

224

Notes

9. Algorithmic procedures

225

1. The words of Grace Murray Hopper are
cited in Lois Mandel, “The Computer Girls,”
Cosmopolitan (April 1967): 52-56.

2. Hopper’s FLOW-MATIC was the first
programming language to express
operations using plain English description,
developed for UNIVAC at Remington Rand.
FLOW-MATIC was designed to use a step-
by-step approach as “easily understood
documentation” without requiring prior
training in mathematics and formulars,
computer coding and syntaxes, and to
facilite communication “between the
computer proramming group and
operating management.” See Remington-
Rand Univac, FLOW-MATIC
Programming System (Philadelphia,
PA: Remington Rand Univac, Division of
Sperry and Corporation, 1958).

3. The recipe analogy of algorithms was
developed in Joasia Krysa and Grzesiek
Sedek’s “Source Code” entry to Software
Studies: A Lexicon , 236-243. The analogy
can also be found in recent texts that we
have included in our essential/further
reading lists for this chapter: Ed Finn,
What Algorithms Want: Imagination
in the Age of Computing (Cambridge,
MA: MIT Press, 2017), 17; and Taina Bucher,
If…Then: Algorithmic Power and
Politics (Oxford: Oxford University Press,
2018), 21.

4. Knuth, The Art of Computer
Programming, xv. Alongside the listed
procedures, the book begins with a
flowchart for reading the book, the
significance of which will become obvious
later in this chapter, and something we
have also used for the individual chapters
and contents page of this book.

5. Knuth, The Art of Computer
Programming, xv-xvi.

6. Knuth, The Art of Computer
Programming, v.

7. The term “algorithm” has a historical
relation to “algorism” as the process of
doing arithmetic using Arabic numerals
(originating from the title of the book
Kitab al jabr w’al-muqabala (Rules of
restoration and reduction) written by
Persian author Abu Ja’far Mohammed ibn
Musa al-Khowarizmi (ca. 825).

8. Most modern programming languages
are “Turing-complete,” a term used to
describe abstract machines, that can
emulate a Turing machine. See Chapter 5,
“Auto-generator,” for more on Turing
machines.

9. In particular to the complexity of the
diagram for calculating Bernoulli numbers
that includes the grouping of operations,
the invention of the loop concept
(repetition and cycle in Lovelace’s term),
the manipulation of symbols and
variables in accordance with rules. Such
algorithm were designed to be used in
mechanical caluclating machines. At the
time, the Babbage Analytical Engine was
conceptually close to modern computers
as it was envisioned as capable of more
than just computation. See Luigi Federico
Menabrea and Ada Lovelace, Sketch of
the analytical engine invented by
Charles Babbage (1842), 694.

10. Lovelace Papers, Bodleian Library, Oxford
University, 42, folio 12 (February 6, 1841),
as quoted, and cited in Dorothy Stein, ed.,
“This First Child of Mine,” in Ada: A Life
and a Legacy (1985), 106–107.

11. Peggy Pierrot, Martino Morandi, Anita
Burato, Christoph Haag, Michael Murtaugh,
Femke Snelting, and Seda Gürses, The
Techno-galactic guide to software
observation (Brussels: Constant, 2018),
175-186.

12. Ferranti Limited, Ferranti Pegasus
Computer, programming manual, Issue 1,
List CS 50,September 1955.

13. Viewing programming as a social activity
undermines some of the predominant
stereotypes associated with activity such
as the stereotypical image of the
antisocial hacker (male nerds, bearded,
unwashed). See Nathan Ensmenger,
“Making Programming Masculine,” in
Gender Codes: Why Women are
Leaving Computing , Thomas J. Misa, ed.
(Hoboken, New Jersey: John Wiley &
Sons, Inc., 2010), 137. For more on the
benefits of collaborative working, see Chih
Wei Ho, et al, “Examining the impact of
pair programming on female students,”
North Carolina State University. Dept. of
Computer Science (2004).

14. In Guattari’s terms, “the diagram is
conceived as an autopoetic machine
which not only gives it a functional and
material consistency, but requires it to
deploy its diverse registers of alterity,
freeing it from an identity locked into
simple structural relations.” Félix Guattari,
“Machinic Heterogenesis,” Chaosmosis:
An Ethico-Aesthetic Paradigm
(Bloomington, IN: Indiana University
Press, 1995), 44. “Freeing” here applies to
escaping a pre-determined
“diagrammatic order” imposed on the
machine — algorithmically perhaps.

15. You can find an illustrative flowchart of the
simple program at https://gitlab.com/a
esthetic-programming/book/-/blob/m
aster/source/9-AlgorithmicProcedures/
emoji_flowchart.svg.

16. Ensmenger, “The Multiple Meanings of a
Flowchart,” 324 & 346.

17. In a teaching setting, we have a group
prepare to present this problem and how
they approach this both technically and
conceptually to make them think about
the significance of sorting in a wider
cultural context. The other students then
start the class with this sorting exercise
and focus on algorithmic procedures.
Here is one of the many ways of
implementing the sorting problem, http
s://editor.p5js.org/siusoon/sketches/
7g1F594D5.

18. See Paolo Cirio, Flowcharts: On
Systems of Systems , Artist Monograph
(Lulu, 2019); available at https://www.pa
olocirio.net/press/archive/?/id/268/
t/FLOWCHARTS/. Open Society
Structures - Algorithms Triptych
(2009) would make a good example for
our purpose here.

19. GWEI (2005) was part of the Hacking
Monopolism Trilogy which also
included Amazon Noir (2006) and Face
to Facebook (2011). For more on GWEI,
see http://www.gwei.org/index.php.

20. For an analysis of GWEI, see Søren Bro
Pold, “Interface Perception: The
Cybernetic Mentality and Its Critics:
Ubermorgen.com,” in Andersen & Pold,
eds. Interface Criticism: Aesthetics
Beyond Button (Aarhus: Aarhus
University Press, 2011), 91-113.

21. For a close reading of this project, see
Christian Ulrik Andersen and Søren Bro
Pold, The Metainterface: The Art of
Platforms, Cities, and Clouds
(Cambridge, MA: MIT Press, 2018), 57-60.

22. For more on UBERMORGEN’s The Project
Formerly Known as Kindle
Forkbomb, see https://en.wikipedia.or
g/wiki/The_Project_Formerly_Known_A
s_Kindle_Forkbomb; and for the context
of Kunsthal Aarhus exhibition, see http
s://www.e-flux.com/announcements/31
936/systemics-2-as-we-may-think-or-the-
next-world-library/.

23. A fuller description of the Kindle platform
can be found at https://kdp.amazon.co
m/en_US/.

24. Taina Bucher, If…Then: Algorithmic
Power and Politics (Oxford:)Oxford
University Press, 2018), 20.

25. Finn, What Algorithms Want:
Imagination in the Age of
Computing, 34.

9. Algorithmic procedures

225

1. The words of Grace Murray Hopper are
cited in Lois Mandel, “The Computer Girls,”
Cosmopolitan (April 1967): 52-56.

2. Hopper’s FLOW-MATIC was the first
programming language to express
operations using plain English description,
developed for UNIVAC at Remington Rand.
FLOW-MATIC was designed to use a step-
by-step approach as “easily understood
documentation” without requiring prior
training in mathematics and formulars,
computer coding and syntaxes, and to
facilite communication “between the
computer proramming group and
operating management.” See Remington-
Rand Univac, FLOW-MATIC
Programming System (Philadelphia,
PA: Remington Rand Univac, Division of
Sperry and Corporation, 1958).

3. The recipe analogy of algorithms was
developed in Joasia Krysa and Grzesiek
Sedek’s “Source Code” entry to Software
Studies: A Lexicon , 236-243. The analogy
can also be found in recent texts that we
have included in our essential/further
reading lists for this chapter: Ed Finn,
What Algorithms Want: Imagination
in the Age of Computing (Cambridge,
MA: MIT Press, 2017), 17; and Taina Bucher,
If…Then: Algorithmic Power and
Politics (Oxford: Oxford University Press,
2018), 21.

4. Knuth, The Art of Computer
Programming, xv. Alongside the listed
procedures, the book begins with a
flowchart for reading the book, the
significance of which will become obvious
later in this chapter, and something we
have also used for the individual chapters
and contents page of this book.

5. Knuth, The Art of Computer
Programming, xv-xvi.

6. Knuth, The Art of Computer
Programming, v.

7. The term “algorithm” has a historical
relation to “algorism” as the process of
doing arithmetic using Arabic numerals
(originating from the title of the book
Kitab al jabr w’al-muqabala (Rules of
restoration and reduction) written by
Persian author Abu Ja’far Mohammed ibn
Musa al-Khowarizmi (ca. 825).

8. Most modern programming languages
are “Turing-complete,” a term used to
describe abstract machines, that can
emulate a Turing machine. See Chapter 5,
“Auto-generator,” for more on Turing
machines.

9. In particular to the complexity of the
diagram for calculating Bernoulli numbers
that includes the grouping of operations,
the invention of the loop concept
(repetition and cycle in Lovelace’s term),
the manipulation of symbols and
variables in accordance with rules. Such
algorithm were designed to be used in
mechanical caluclating machines. At the
time, the Babbage Analytical Engine was
conceptually close to modern computers
as it was envisioned as capable of more
than just computation. See Luigi Federico
Menabrea and Ada Lovelace, Sketch of
the analytical engine invented by
Charles Babbage (1842), 694.

10. Lovelace Papers, Bodleian Library, Oxford
University, 42, folio 12 (February 6, 1841),
as quoted, and cited in Dorothy Stein, ed.,
“This First Child of Mine,” in Ada: A Life
and a Legacy (1985), 106–107.

11. Peggy Pierrot, Martino Morandi, Anita
Burato, Christoph Haag, Michael Murtaugh,
Femke Snelting, and Seda Gürses, The
Techno-galactic guide to software
observation (Brussels: Constant, 2018),
175-186.

12. Ferranti Limited, Ferranti Pegasus
Computer, programming manual, Issue 1,
List CS 50,September 1955.

13. Viewing programming as a social activity
undermines some of the predominant
stereotypes associated with activity such
as the stereotypical image of the
antisocial hacker (male nerds, bearded,
unwashed). See Nathan Ensmenger,
“Making Programming Masculine,” in
Gender Codes: Why Women are
Leaving Computing , Thomas J. Misa, ed.
(Hoboken, New Jersey: John Wiley &
Sons, Inc., 2010), 137. For more on the
benefits of collaborative working, see Chih
Wei Ho, et al, “Examining the impact of
pair programming on female students,”
North Carolina State University. Dept. of
Computer Science (2004).

14. In Guattari’s terms, “the diagram is
conceived as an autopoetic machine
which not only gives it a functional and
material consistency, but requires it to
deploy its diverse registers of alterity,
freeing it from an identity locked into
simple structural relations.” Félix Guattari,
“Machinic Heterogenesis,” Chaosmosis:
An Ethico-Aesthetic Paradigm
(Bloomington, IN: Indiana University
Press, 1995), 44. “Freeing” here applies to
escaping a pre-determined
“diagrammatic order” imposed on the
machine — algorithmically perhaps.

15. You can find an illustrative flowchart of the
simple program at https://gitlab.com/a
esthetic-programming/book/-/blob/m
aster/source/9-AlgorithmicProcedures/
emoji_flowchart.svg.

16. Ensmenger, “The Multiple Meanings of a
Flowchart,” 324 & 346.

17. In a teaching setting, we have a group
prepare to present this problem and how
they approach this both technically and
conceptually to make them think about
the significance of sorting in a wider
cultural context. The other students then
start the class with this sorting exercise
and focus on algorithmic procedures.
Here is one of the many ways of
implementing the sorting problem, http
s://editor.p5js.org/siusoon/sketches/
7g1F594D5.

18. See Paolo Cirio, Flowcharts: On
Systems of Systems , Artist Monograph
(Lulu, 2019); available at https://www.pa
olocirio.net/press/archive/?/id/268/
t/FLOWCHARTS/. Open Society
Structures - Algorithms Triptych
(2009) would make a good example for
our purpose here.

19. GWEI (2005) was part of the Hacking
Monopolism Trilogy which also
included Amazon Noir (2006) and Face
to Facebook (2011). For more on GWEI,
see http://www.gwei.org/index.php.

20. For an analysis of GWEI, see Søren Bro
Pold, “Interface Perception: The
Cybernetic Mentality and Its Critics:
Ubermorgen.com,” in Andersen & Pold,
eds. Interface Criticism: Aesthetics
Beyond Button (Aarhus: Aarhus
University Press, 2011), 91-113.

21. For a close reading of this project, see
Christian Ulrik Andersen and Søren Bro
Pold, The Metainterface: The Art of
Platforms, Cities, and Clouds
(Cambridge, MA: MIT Press, 2018), 57-60.

22. For more on UBERMORGEN’s The Project
Formerly Known as Kindle
Forkbomb, see https://en.wikipedia.or
g/wiki/The_Project_Formerly_Known_A
s_Kindle_Forkbomb; and for the context
of Kunsthal Aarhus exhibition, see http
s://www.e-flux.com/announcements/31
936/systemics-2-as-we-may-think-or-the-
next-world-library/.

23. A fuller description of the Kindle platform
can be found at https://kdp.amazon.co
m/en_US/.

24. Taina Bucher, If…Then: Algorithmic
Power and Politics (Oxford:)Oxford
University Press, 2018), 20.

25. Finn, What Algorithms Want:
Imagination in the Age of
Computing, 34.

Aesthetic Programming

226

26. Andrew Goffey, “Algorithm,” in Fuller, ed.
Software Studies , 19.

27. Rob Kitchin, “Thinking Critically About and
Researching Algorithms”, in
Information, Communication &
Society (2016), 16.

28. Kitchin, “Thinking Critically About and
Researching Algorithms,” 10.

29. Matteo Pasquinelli, “Google’s PageRank
Algorithm: A Diagram of the Cognitive
Capitalism and the Rentier of the
Common Intellect,” in Konrad Becker and
Felix Stalder, eds., Deep Search: The
Politics of Search Beyond Google
(London: Transaction Publishers: 2009).
The PageRank algorithm was written by
Sergey Brin and Lawrence Page in 1990,
and seems to exemplify Google’s
monopolistic power.

30. The specific interpretation of diagramming
offered by Deleuze and Guattari is far too
complex to go into in more detail here. In
short, they use the idea of the diagram to
model the dynamics of signification, and
of what escapes signification: “The
diagrammatic or abstract machine does
not function to represent, even something
real, but rather constructs a real that is
yet to come, a new type of reality.” htt
p://frequencies.ssrc.org/2011/12/19/di
agrammic-thinking/. For more on these
ideas, see Gilles Deleuze and Félix
Guattari, A Thousand Plateaus (1980).

31. The flowchart is based on the opening
lyrics of Jackson 5’s “Blame It On the
Boogie,” released in 1978.

32. Simon O’Sullivan, “On the Diagram (and a
Practice of Diagrammatics),” in Karin
Schneider and Begum Yasar, eds.,
Situational Diagram (New York:
Dominique Lévy, 2016), 17.

33. This description also mirrors the way the
diagrams operate across time: “Might this
diagrammatics also involve a different
take on relations among the past,
present, and future? This is the ‘drawing’
of lines between different times, the
building of circuits and the following of
feedback loops; it is to understand time
as specific to any given system (or
practice) and not as neutral background.
This might involve diagramming the way a
different kind of future can work back on
the present (and determine how we act or
make in the here and now). Or, indeed,
diagramming how the present itself can
involve a re-engineering of the past
(understood as resource and living
archive) that will then allow a different
kind of future to emerge.” O’Sullivan, “On
the Diagram (and a Practice of
Diagrammatics),” 24.

34. Adrian Mackenzie, Machine Learners:
Archaeology of a Data Practice
(Cambridge, MA: MIT Press, 2017), 23.

35. Mackenzie, Machine Learners:
Archaeology of a Data Practice , 17.

36. Although the concept of algorithm is
rooted in computer science, scholars from
other fields like cultural and media studies
take on the technical concept of
algorithm and explore its wider cultural
consequences and political implications.
The analogy of algorithms as recipes can
also be seen here: Ed Finn, What
Algorithms Want: Imagination in the
Age of Computing (Cambridge, MA: MIT
Press, 2017), 17; and

37. Adrian Mackenzie, “The Production of
Prediction: What Does Machine Learning
Want?”, European Journal of Cultural
Studies 18, no.4-5 (2015): 429–445.

38. See Stephen Morris and Orlena Gotel,
“The Role of Flow Charts in the Early
Automation of Applied Mathematics,”
BSHM Bulletin: Journal of the
British Society for the History of
Mathematics 26, no. 1 (March 2011): 44–
52, https://doi.org/10.1080/174984309
03449207; and Nathan Ensmenger, “The
Multiple Meanings of a Flowchart,”
Information & Culture: A Journal of
History 51, no.3 (2016): 321–51, https://d
oi.org/10.1353/lac.2016.0013.

10. Machine unlearning

227

10. Machine unlearning

10. Machine unlearning

setup()

MiniX:
Final Project

start() Between input and output

While() Exercise in class

Learning algorithms

ml5.js library

Source code

Reading
Auto Chapter Generator

Exercise in class

Notes

Required reading

Further reading

229

231

231

232

233

237

238

241
243

243

246

248

248

249

Contents

– setup()

– start()

– Between input and output

– Exercise in class

– Learning algorithms

– ml5.js library

– Source code

– Reading Auto Chapter Generator
– Exercise in class

– While()

– MiniX: final project

– Required reading

– Further reading

– Notes

10. Machine unlearning

229

setup()

Figure 10.1: Basic flow diagram of keyword detection of ELIZA by Joseph Weizenbaum (1966). Image
copyright Communications of the ACM 61

This chapter begins with a flowchart that describes how a chatbot works — both in terms of
procedure and logic. We use this historical example to introduce this final chapter of the book
which is on machine learning, 1 broadly defined as a collection of models, statistical
methods and operational algorithms that are used to analyze experimental or observational
data. Given the large volume of data being produced and mined, and its widespread
application in everyday voice-controlled devices such as Apple’s Siri or Amazon’s Echo 2 to
more sinister applications in border control face recognition software, it is hardly surprising
that machine learning has become big business.

Machine learning is a term coined by Arthur Samuel in 1959 through his research at IBM on
game development, with the ultimate goal to reduce or even eliminate the need for “detailed
programming effort.” 3 The roots of how computers might begin to write their own
programs lie in older discussions of artifical intelligence. Speculation as to whether
computers could demonstrate credible responses to inputs is reflected in the relatively
simple chatbot example that uses keywords to produce a “knowing” response, or follow up
question. ELIZA was one of the first chatbots and was created by Joseph Weizenbaum at MIT

Aesthetic Programming

230

between 1964 and 1966. It simulates a conversation between a Rogerian psychotherapist
and their patient, prompting for user input, and then uses primitive “natural language
processing” 4 to transform this input — using a simple script based on keyword association
and language patterns (see Figure 10.1) — into what seems to be a meaningful output, often
in the form of a return question. Despite its apparent simplicity, it can be quite convincing (as
you will experience later on).

Conversations with ELIZA involve an “illusion” 5 to make machines appear as if they were
human entities. Evidently, ELIZA exploits our willingness to anthropomorphize technology,
and what passes for intelligence, as not only is it able to maintain a seemingly relevant and
personalized dialogue, but also, as Weizenbaum notes, “some subjects have been very hard
to convince that ELIZA is not human.” 6 Here we once again reference the Turing Test. 7
Can a machine respond convincingly to an input with an output similar to a human — or more
precisely — can it mimic rational thinking? It’s also interesting to note that ELIZA is named
after Eliza Doolittle — from the George Bernard Shaw play Pygmalion 8 — which centers on
a working class flower girl, and a patronizing bet by a professor of phonetics, that he can
teach her gentility, and hence upward mobility through the British class system, through the
acquisition of “proper speech” (as opposed to Cockney dialect, which interestingly is a
rejection of upward mobility in its coded form). 9 Perhaps the current technology of voice
assistants operates on similar principles as they are able to not only process content but
learn the style of human speech.

In machine learning, it is commonly understood that the style is learnt from training datasets
through techniques to process and analyze large amounts of (natural language) data. As
such, machine learning techniques such as “style transfer” rely on a process of
generalization in order to identify patterns. However, this “pattern recognition” is clearly not
a neutral process as it involves the identification of input data, and the “discrimination” of
information. 10 It is clear that there is other kinds of discrimination in such processes, such
as inherent stereotypes in voice assistants 11 or in online translation tools, 12 and other
examples that might include the AI chatbot Tay that was regarded as racist, 13 or how facial
recognition in Amazon software, and other smart systems demonstrate gender and racial
bias. 14 Understood this way, pattern recognition is not only about smoothing tasks and
making accurate predictions in terms of technical operations but also political operations as
it creates “subjects and subjection, knowledge, authority” as well as classification and
categorization. 15

Appropriately, for the last chapter of our book, many of the critical-technical issues we have
discussed through previous chapters come together in the examination of machine learning.
The example of ELIZA/Eliza — both program and person — taken together emphasize how,
when it comes to machine learning, both humans and machines train, and are trained by,
these processes. 16 Our machines are not independent of us, but are part of wider socio-
technical assemblages which learning to program helps to make apparent. 17 In the case of
this book, we might speculate on whether we have been writing a teaching or a learning book
if we assume that you have to learn something before you can actually teach it and that the
act of teaching can help you learn something. To what extent are we attempting to “train,”
and who is training who? We will come back to this discussion at the end of the chapter but
for now it is clear that we need to begin to understand these operations better and take our
learning far more seriously in the case of both machines and humans.

10. Machine unlearning

231

start()

Let’s start with a closer examination of and reflection on the ELIZA chatbot by using the test
application produced by Norbert Landsteiner in 2005:

Figure 10.2: A screenshot of the ELIZA Terminal (2005) on a web
browser, implemented by Norbert Landsteiner. Courtesy of the designer

Tasks:

1. Visit the ELIZA Test (2005) by clicking the button “Next Step”,
https://www.masswerk.at/elizabot/eliza_test.html so you can see the original
example given by Weizenbaum in his published article. 18

2. Then visit the work ELIZA Terminal (2005) via the link
https://www.masswerk.at/elizabot/eliza.html, and try to have your own
conversation. 19

3. Share your experience of the original conversation (by Weizenbaum) and your
conversation with the chatbot:

– How would you describe your experience of ELIZA (e.g. the use of language, style of
conversation, and quality of social interaction)?

– How would you assess the ability of technology such as this to capture and
structure feelings, and experiences? What are the limitations?

Between input and output

We have briefly touched on machine learning, but let’s clarify what it actually entails. In a
contemporary context, it refers to various techniques of “data-handling,” 20 or, more
precisely, statistics and data analysis. It is commonly described by three components: input,
modelling (or learning), and output. Usually, a large amount of data is needed to be

https://www.masswerk.at/elizabot/eliza_test.html
https://www.masswerk.at/elizabot/eliza.html

Aesthetic Programming

232

collected, parsed and cleaned. 21 Data cleansing is a term often used in computer or data
science to describe the process of preparing data (data can consist of texts, video, images,
gestures, etc.) to be input data by adjusting data inconsistency in terms of removing or
modifying data that is irrelevant, duplicated, or improperly formatted. These various data
preparation processes involve decision-making in terms of identifying and accessing the
datasets, and how to structure the raw data, and deal with inconsistencies. If the data
originates in different places, then the question arises of how to normalize the data to
structure a cohesive dataset. 22 As in Chapter 4, “Data capture,” we can already see how
this process is fraught with problems concerning what gets included and excluded, and how
this is decided and effected, and by whom. Rather than simply a means to an end, the
dataset becomes a hugely significant cultural object that we need to understand better. 23

Exercise in class

In the following exercise, 24 we will use the experimental AI project Teachable
Machine (version 1) 25 to engage more closely with machine learning processes
involving input and output, to understand the relationship between the two:
https://teachablemachine.withgoogle.com/v1/.

Figure 10.3: The Teachable Machine (Version 1) interface

This web application includes input, learning, and output. By capturing images via your
web camera, the program utilizes images as input data and there are three “training
classifiers” you can play with.

https://teachablemachine.withgoogle.com/v1/

10. Machine unlearning

233

What to do:

Prepare three set of gestures that can be captured by the web camera. Each gesture
has to be repeatedly trained by long-pressing the colored “TRAIN” button, and this
generates the machine learning model based on the captured images as input data
(also called the “training dataset”) (see Figure 10.3). This process is used to train a
computer to recognize the specific gestures/images/poses so that when there is a
new image input (a so-called “test dataset”), the learning/teachable machine can
classify those gestures with various confidence levels, and then predict the
corresponding output results. The three default output modes (GIF, Sound, Speech)
can be further modified by searching for other sets of images, sounds and texts.

The simplest way to start is:

1. Train the machine using three different sets of gestures/facial expressions, then
observe the predictive results shown as various outputs.

2. Test the boundaries of recognition or classification problems, such as having a
different test dataset, or under different conditions such as variable lighting and
distance. What can, and cannot, be recognized?

3. What happens when you only use a few images? How does this amount of training
input change the machine’s predictions?

This initial exercise aims to familiarize you with the three components of machine
learning: input, learning and output, as well as to explore the relation between data
and these components. Furthermore, this execise sets the stage for thinking about
the ways in which machines learn from data, identify patterns, make decisions,
and predictions.

Learning algorithms

Machine learning utilizes a variety of statistical algorithms to process (training) datasets. An
image of a person, for instance, is identified as such by measuring a set of gradients of
known images derived from training data, which “teaches” algorithms to recognize what
constitutes a person.

Broadly speaking there are three types of algorithms: Supervised Learning, Unsupervised
Learning, and Reinforcement Learning.

Supervised Learning - This model is based on a training dataset with input/output pairs as
expected answers. A classic example would be spam emails in which an algorithm learns
from the sample of emails that are labelled as “spam” or “not spam.” The goal of this type
of learning is to map the input data to output labels. For example, with new email as the
input, what would the predicted output result be? Can it be classified as spam and then

Aesthetic Programming

234

moved to the spam mailbox? In mathematical terms, this is expressed as Y=f(X), and the
goal is to predict the output variable Y from the new input data (X). But this prediction
process relies on classification techniques, for example binary classification (such as yes/no,
spam/not spam, male/female) and multi-classification (such as different object labels in
visual recognition), which is based on the process of data labelling. This is where
inconsistencies arise. Data is categorized in a discrete manner, and there are many reasons
that might lead to a “normative” prediction and this is especially problematic when it comes
to complex subjects such as gender, race, and identity, because these operate beyond
binary, discrete classification.

Artist-researcher Nicolas Malevé has done extensive work on this topic in relation to the
ImageNet dataset, 26 a hugely influential project in the field of computer vision, developed
by Fei-Fei Li at Stanford University in 2009. The dataset is vast and contains over 14 million
photographs that are organized into over twenty-one thousand “synsets” (categories),
taken from a lexical database called WordNet. 27 The labelling work was completed by over
25,000 workers over a two-year period using Amazon Mechanical Turk, a crowdsourcing
platform. Exhibited across two months of the summer of 2019 as a live stream on the web
and on the Media Wall at The Photographers Gallery, London, Malevé’s script cycled through
the entire contents of the dataset at a speed of 90 milliseconds per image, pausing at
random points to enable the viewer to “see” some of the images, and how they are
categorized (see Figure 10.4). This raised questions about the relation of scale between the
overwhelming quantities of images needed to train algorithms and the human labor, and
attention (or the lack of it) required to annotate and categorize the images. 28 An excerpt
form the live recording of the work entitled 12 Hours of ImageNet can be viewed online.

Figure 10.4: The categorization of “cock” in
Exhibiting ImageNet (2019) by Nicolas Malevé.

Courtesy of the artist

Figure 10.5: An illustration of Unsupervised
Learning with K-means clustering. Image from

Wikimedia Commons

Unsupervised Learning - Unlike the previous learning model, the training dataset does not
contain a set of labelled data. One of the common tasks with unsupervised learning is
“clustering” (algorithms such as K-means and Hierarchical Clustering). The goal of this
technique is to find similarities, providing insights into underlying patterns, and relationships
of different groups in a dataset using exploratory and cluster analysis. As such, items in the
same group or cluster share similar attributes and metrics (see Figure 10.5). The idea behind

10. Machine unlearning

235

clustering is to identify similar groups of data in a dataset, segregating groups with similar
characteristics. It is commonly used in the business and marketing sectors to understand
customer preferences so personalization and data marketing can be provided by grouping
customers based on their purchasing behavior with regard to certain types of goods.

Artists Joana Chicau and Jonathan Reus produced Anatomies of Intelligence 29 based on
an unsupervised learning model to develop an understanding of anatomical knowledge, and
computational learning (see Figure 10.6). In their AI workshop, 30 they suggest that
participants think of two features for examining a small image dataset (around 15 images) —
such as “cuteness” and “curliness” — and each of the images are rated and sorted according
to these features (in the form of x and y axis) within a number range say from 0.0 to 1.0 (for
normalization and rescaling, in statistical terms, so that data are in the same scale). More
features can be added, but it is more convenient to have two only for a physical workshop
setting. Each image can then be described by the set of feature values. As a result, several
clusters are formed, providing a new perspective on the relations between images in terms of
their similarities and differences (see Figure 10.7). It’s a simple exercise, but can obviously be
scaled up, systematized, and automated, for example by deciding on the number of clusters
and calculating the distribution of/distance between data points. This also helps reinforce
how algorithms designed to recognize patterns, known as neural networks, 31 operate,
loosely based, as they are, on a model of the human brain and how it learns to differentiate
certain objects from other objects.

Reinforcement Learning — This type of learning technique is based on interaction with the
environment, mapping an analysis of a situation into actions. 32 The learner (or agent) does
not have any previous data to base itself on, to determine, or predict which action to take,
but rather learns by trial and error to yield the best results. For example, the computer
program AlphaGo 33 beat the world champion of the Go abstract strategy board game in
2017. AlphaGo was able to evaluate the various positions and select the best moves using
self-taught processes. This type of learning finds the best possible behavior or path to take in
a specific environment, mapping state-action pairs to achieve the best result. As in behavioral
psychology, reinforcement is used to suggest future actions, like a child getting a treat for
doing what it was told to. Unlike supervised learning that relies on input training data, the
characteristics of reinforcement learning are that the program understands the environment
as a whole, 34 and is able to learn from its experience by evaluating the effectiveness of
each action taken: “trial-and-error search” and “delayed reward” 35 are based on sequential
decisions, computation, repeated attempts, and feedback on the success of actions.

Aesthetic Programming

236

Figure 10.6: Anatomies of Intelligence (2018-) by Joana Chicau and Jonathan Reus. Courtesy of the artists

Figure 10.7: The clustering of images based on “cuteness” and “curliness”
in the Anatomies of Intelligence workshop by Joana Chicau and

Jonathan Reus.

10. Machine unlearning

237

ml5.js library

Given the limitations of time and space, and in line with the book thus far, this chapter will
experiment with the ml5.js machine learning library, a JavaScript framework that can be run
in a web browser just like p5.js. Aiming to make machine learning accessible to a wide
audience, especially programming beginners, ml5.js is built on top of the more complex
TensorFlow JavaScript library. 36 Furthermore, the ml5.js site consists of extensive code
examples and tutorials with pre-trained models that have been created using prior training
processes. 37

Working towards the final chapter, “Afterword: Recurrent Imaginaries” — which can be likened
to positive reinforcement for having finished your learning so far — we have appropriated an
example from ml5.js: CharRNN_Text. Instead of using the pre-trained model provided by ml5.js
that was trained using the literary works of Virginia Woolf, we offer another pre-trained
model 38 based all the chapters of this book. In this way our final example learns from
previous chapters and generates a new text based on the generalized style of the others. Of
course there is a process of reduction here that exemplifies some of the political issues we
have raised before with regard to knowledge production. 39

The training process uses a “Recurrent Neural Network” (RNN) and “Long Short Term
Memory” (LSTM) that analyze and model sequential data, character by character. Both are
useful in terms of character-by-character training because the order, and context of the text
are both important to generate sentences that make sense to human readers (this is related
to the field of “natural language processing”). This recurrent type of neural network can
capture long-term dependencies in a corpus in order to make sense of the text pattern
through many iterations of the training process, using markdowns in the form of characters
and symbols from each chapter as raw data. What we end up with more or less makes sense,
in its processing of text, but also source code, image links, captions, and so on, but most
importantly with the machine generated text in the next bonus chapter it provides an insight
into how a machine learns from our book in contrast to what you might have learnt 60 . Here
we return to one of the main objectives for the book, i.e. exploring some of the similarities
and differences between human, and machine reading and writing: what we refer to as
aesthetic programming.

Aesthetic Programming

238

Figure 10.8: Auto Chapter Generator

RunMe https://aesthetic-
programming.gitlab.io/book/p5_SampleCode/ch10_MachineUnlearning/

Source code

JavaScript:

//small modification from the source:1

//https://learn.ml5js.org/#/reference/charrnn2

3

let charRNN;4

let textInput;5

let lengthSlider;6

https://aesthetic-programming.gitlab.io/book/p5_SampleCode/ch10_MachineUnlearning/

10. Machine unlearning

239

let tempSlider;7

let button;8

let runningInference = false;9

10

function setup() {11

 noCanvas();12

 // Create the LSTM Generator passing it the model directory13

 charRNN = ml5.charRNN('./models/AP_book/', modelReady);14

15

 // Grab the DOM elements16

 textInput = select('#textInput');17

 lengthSlider = select('#lenSlider');18

 tempSlider = select('#tempSlider');19

 button = select('#generate');20

21

 // DOM element events22

 button.mousePressed(generate);23

 lengthSlider.input(updateSliders);24

 tempSlider.input(updateSliders);25

}26

27

// Update the slider values28

function updateSliders() {29

 select('#length').html(lengthSlider.value());30

 select('#temperature').html(tempSlider.value());31

}32

33

function modelReady() {34

 select('#status').html('Model Loaded');35

}36

37

// Generate new text38

function generate() {39

 // prevent starting inference if we've already started another instance40

 if(!runningInference) {41

 runningInference = true;42

43

 // Update the status log44

 select('#status').html('Generating...');45

46

 // Grab the original text47

 let txt = textInput.value();48

 // Check if there's something to send49

 if (txt.length > 0) {50

 // This is what the LSTM generator needs51

 // Seed text, temperature, length to outputs52

 let data = {53

Aesthetic Programming

240

HTML:

 seed: txt,54

 temperature: tempSlider.value(),55

 length: lengthSlider.value()56

 };57

58

 // Generate text with the charRNN59

 charRNN.generate(data, gotData);60

61

 // When it's done62

 function gotData(err, result) {63

 if (err) {64

 console.log("error: " + err);65

 }else{66

 select('#status').html('Ready!');67

 select('#result').html(txt + result.sample);68

 runningInference = false;69

 }70

 }71

 }72

 }73

}74

<html>1

<head>2

 <meta charset="UTF-8">3

 <title>Auto Chapter Generator</title>4

 <script src="https://unpkg.com/ml5@0.4.3/dist/ml5.min.js"5

 type="text/javascript"></script>6

 <script language="javascript" type="text/javascript"7

 src="../libraries/p5.js"></script>8

 <style>9

 body {background-color: white;font-family:"Lucida Console", Monaco,10

 monospace;font-size:12;color:grey;}11

 h1 {color: blue;}12

 p {color: black; font-size:14;}13

 </style>14

</head>15

16

<body>17

 <h1>Auto Chapter Generator</h1>18

 <h2>This example uses a pre-trained model on the collection of all the19

 chapters (in the form of markdown) of the book Aesthetic Programming:20

 A Handbook of Software Studies</h2>21

 <p>seed text:22

10. Machine unlearning

241

Reading Auto Chapter Generator

index.html

To load the ml5.js library as part of the overall sketch, you need the following line in your
index.html, just like importing other libraries as discussed in Chapter 4, “Data capture,” with
the clmtrackr library. For this example, we are using ml5.js library - version 0.4.3.

Apart from the new ml5.js, the HTML file contains the following DOM elements (see Figure
10.8) that can display the corresponding data, and interact with the user there. As such the
sketch.js is mainly used to process the data from the DOM and form elements, and it is not
used for canvas drawing (noCanvas() is used in Line 12 within the function setup(){}).

1. A text input box for entering seed/input text. In this example, we have used “Afterword:
Recurrent Imaginaries” as a sequence input to generate the next character, continuously
forming a new seed sequence for next character prediction: <input id="textInput"
value="Afterword: Recurrent Imaginaries" size="30"/>

2. A slider for selecting the number of generated characters with a range from 100 to
2,000: <input id="lenSlider" type="range" min="100" max="2000" value="1000"/>

3. A slider for setting the temperature (the value that controls the amount of uncertainty
of predictions) 40 which has a range from 0 to 1: <input id="tempSlider" type="range"
min="0" max="1" step="0.01"/>

4. The text shows the status of the program, e.g. “Loading Model,” “Model Loaded,”
“Generating…,” “Ready!”: <p id="status">Loading Model</p>

 <input id="textInput" value="Afterword: Recurrent Imaginaries" size="30"/>23

 </p>24

 <p>length:25

 <input id="lenSlider" type="range" min="100" max="2000" value="1000"/>26

 1000</p>27

 <p>temperature:28

 <input id="tempSlider" type="range" min="0" max="1" step="0.01"/>29

 0.5</p>30

 <p id="status">Loading Model</p>31

 <button id="generate">generate</button>32

 <hr>33

 <p id="result"></p>34

 <script src="sketch.js"></script>35

</body>36

</html>37

<script src="https://unpkg.com/ml5@0.4.3/dist/ml5.min.js"1

type="text/javascript"></script>2

Aesthetic Programming

242

5. A clickable button bearing the word “generate”: <button id="generate">generate</button>

6. A result area that displays the generative text: <p id="result"></p>

sketch.js

The sketch loads the pre-trained model and generates text based on the collected data (the
seed text, its length, and temperature value).

The first step is to initialize and load the trained model into your sketch with the path
./model/AP_book/ by using the method charRNN from the ml5.js library (see Line 4 above). The
callback function modelReady will be executed when the model is successfully loaded into the
sketch and will change its status from “Loading Model” to “Model Loaded.”

The program collects data in the form of objects (using the select syntax to search for the
HTML elements, especially the input id that have been defined in index.html): the seed text
(based on the text input), the length of the predictive text (based on the slider), as well as
the temperature value (based on the other slider).

let charRNN;1

2

function setup() {3

 charRNN = ml5.charRNN('./models/AP_book/', modelReady);4

 …5

}6

function setup() {1

…2

 // Grab the DOM elements3

 textInput = select('#textInput');4

 lengthSlider = select('#lenSlider');5

 tempSlider = select('#tempSlider');6

 button = select('#generate');7

8

 // DOM element events9

 button.mousePressed(generate);10

 lengthSlider.input(updateSliders);11

 tempSlider.input(updateSliders);12

…13

}14

function generate() {1

…2

 let data = {3

 seed: txt,4

 temperature: tempSlider.value(),5

10. Machine unlearning

243

The key data required for the generator are the seed text, temperature, and length (the
numbers of characters) for text generation. These data objects are passed on to the
charRNN’s method: charRNN.generate() in order to process the seed text via the pre-trained
model (with a callback function gotdata()). This .generate() method returns the text object
sample as sample output. Theoretically, the predictive text will have learnt the style from all
the chapters (if only crudely) and then generates the new text accordingly.

Finally, the result will be displayed on screen with the gotData() function. Note that the ml5.js
library also checks for errors with the argument err.

Exercise in class

1. Work with the Auto Chapter Generator program and try to generate texts based
on different length and temperature values.

2. The generative text example also links to the Chapter 5, “Auto-generator,” in terms
of agency, unpredictability, and generativity, but how does this chapter change our
understanding of these terms given what we know about machine learning? What is
learning in this context? What do machines teach us? And in the production of
prediction, what does machine learning want? 41

While()

Many of the issues explored across the chapters of this book come together in the discussion
of machine learning and what this means for critical-technical practice. We deliberately
reference Agre again here and his essay “Toward a Critical Technical Practice” 42 to stress
the importance of social and political aspects of technical fields such as AI. His assertion is

 length: lengthSlider.value()6

 };7

 charRNN.generate(data, gotData);8

…9

}10

function gotData(err, result) {1

…2

 select('#result').html(txt + result.sample);3

…4

}5

Aesthetic Programming

244

that AI is a discursive practice because of the way the technical terminology demonstrates
intellectual generativity, drawing deep analogies across fields, and between otherwise
disparate technical and critical activities, and intellectual traditions. Part of the problem here
is rooted in the tendency to conflate representations with the things that they represent. On
the one hand, we have a technical tradition that looks for precision and, on the other, there is
a critical tradition that looks for ambiguity of meaning. 43 It makes little sense to deny either
approach. For example, on the subject of deep learning at a conference of engineers, Ruha
Benjamin referred to computational depth without sociological depth as “superficial
learning.” 44

The word “learning” is a pertinent example. By first defining machine learning as a “field of
study that gives computers the ability to learn without being explicitly programmed,”
Samuel draws a parallel between human and machine learning, comparing how books speed
up human learning to the success of machines in playing games (like
draughts/checkers). 45 It is of course quite common to draw analogies between machine
intelligence and cognitive development in humans, especially in children. This is broadly a
(constructivist) idea of learning as something informed by, and learning from, experiencing
the world. Yet this can also appear superficial, as for instance, in the following example cited
by Nicolas Malevé of Fei-Fei Li describing her insight into teaching a machine to see, informing
the development of ImageNet:

“If you consider a child’s eyes as a pair of biological cameras, they take one picture
about every two hundred milliseconds, the average time an eye movement is made.
So by age three, a child would have hundreds of millions of pictures of the real world.
That’s a lot of training examples. So instead of focusing on solely better and better
algorithms, my insight was to give the algorithms the kind of training data that a
child was given by experiences, in both quantity and quality.” 46

The example presents a reductive equivalence between human and machine vision. But our
interest is more about what is implied about training, teaching, and learning in general. We
are all involved in the process of teaching machines to look at images, and Malevé describes
the enormous amounts of training that takes place when we use everyday devices such as
smart phones and computers. His interest is not so much our complicity in these processes,
but which pedagogical methods might be useful. What could we learn about learning from
the dynamics of machine learning? In his words, how to “transform it and be transformed by
it? Or, to formulate this in terms even closer to Fei-Fei Li’s, how can we think productively
about the fact that a generation of humans and algorithms are learning together to look at
images?” 47 His intervention is to ask to what extent machine learning and radical
pedagogy might learn from each other, moving beyond the oppressive subject-object
relations to something in which learners can become more active participants in their own
learning. 48 We need to learn how to learn.

If visual literacy is no longer simply an educational task for humans, but also for machines,
then it becomes a question of human-machine literacy in its broadest sense. In many ways,
John Berger’s Ways of Seeing continues to be a useful reference we think. Of course much
has changed since Berger wrote that the “relation between what we see and what we know is
never settled,” 49 but given what we do know about machine learning, we might indeed ask

10. Machine unlearning

245

how that relationship has been further unsettled. 50 That machines can be said to “see” or
“learn” is shorthand for calculative practices that only approximate likely outcomes by using
various algorithms and models. What constitutes knowledge can be seen to be arranged in
ways that further recall Berger’s reflections on the medium of television through which his
ideas were broadcast:

“But remember that I am controlling and using for my own purposes the means of
reproduction needed for these programmes […] with this programme as with all
programmes, you receive images and meanings which are arranged. I hope you will
consider what I arrange but please remain skeptical of it.” 51

We would like to reiterate this here and encourage deep reflection on the means of
production — including books like this, and perhaps those that relate to teaching and learning
are particularly suspect. What is learnt should not be separated from the means by which it is
transmitted, nor the direction of travel from human to machine or from machine to human.
More to the point, the production of meaning lies at the core of our discussion, as are
concerns about what is being learnt, and to what extent this has been compromised or
inflected by reductive ideas of how the world operates. Mackenzie asks, “Does the somewhat
unruly generalization of machine learning […] attest to a redefinition of knowledge, decision,
and control, a new operational formation in which a ‘system is transformed’?” 52 Under
these conditions, the relations between human and machine learning become blurry. The
overall idea of learning implies new forms of control over what and how something becomes
known. Here Mackenzie builds on Foucault to understand machine learning as a form of
knowledge production and as a strategy of power. He tries to understand how machine
learners produce different kinds of knowledge through their differences, for instance the ways
they classify, and categorize data (e.g. this image of a person is a specific gender, race, likely
terrorist, etc.). Knowledge is often set at the lowest common denominator in such cases,
backed up by the enormous infrastructural power of the companies that profit from this as is
the case for platform-based media empires such as Amazon and Google who have invested
massively in this technology (so that users can supply data and learn to be better
consumers). In summary there are some serious worries about the forms of knowledge
produced by machine learning given the broader context in which it arises. Being smart in
this respect is also superficial learning.

All these ideas provide starting points for further work and reflection. 53 The interplay
between truth and fiction is part of this, and “deepfakes” for example (a wordplay on deep
learning) would make a good additional case study for the way in which synthetic instances
can pass for real data. A brief description of this process, and the operations of “Generative
Adversarial Networks” (GANs) might make a useful addition here. 54 With a GAN, two neural
nets — a “Generator” that forges a new data instance, and a “Discriminator” that then
distinguishes fake data created by the Generator from real data — challenge each other with
increasingly realistic fakes, both optimizing their strategies until their generated data is
indistinguishable from the real data. This is also a (unsupervised) method of training that
doesn’t rely on the tagging of input images by humans as the machine generates groupings
based on its own analysis. Might critical theory learn from this, something that resonates

Aesthetic Programming

246

with dialectical materialism in which everything is considered to be in a process of
transformation through contradiction, and becomes a technical reality? Might such an
approach open up alternatives to the conflation of computational logics and politics? 55

In beginning to think about computational operations in this way, as conceptual models or
diagrams, we broadly follow on from what we have learnt thus far about machine learning
through a process of generalization, prediction, and the generation of future possibilities. We
use this last chapter as a way to point to future critical work to be undertaken and to reflect
on machine learning as a set of methods that learn from data in parallel to our experience of
learning through the practice of programming. As Agre puts it: “A critical technical practice
will, at least for the foreseeable future, require a split identity — one foot planted in the craft
work of design and the other foot planted in the reflexive work of critique.” 56 The challenge
then is to work across and learn from both these modes, not as a split but queer identity,
opening up ways of working fluidly across diverse contexts. In this regard, we consider critical
technical practice to be a queer praxis, as we hope has been made clear throughout this
book. Aesthetic programming in this way demonstrates some of the possible ways to further
unsettle the binary split of theory and practice, thinking and doing, art and technology,
humans and machines, and so on.

All this deserves longer discussion that there simply isn’t space for in these closing
paragraphs. At the same time, the constraint allows us to point beyond this book — perhaps
to another yet to be written — because if work processes are automated then our work as
writers, editors, designers, programmers and teachers will be too. The underlying worry is
that our decision-making, thinking, and creativity will be automated, and that our ability to
determine our futures will become compromised by predictive algorithms. 57 It is this
questioning of the power of algorithms that we hope we have managed to provide some
insight into here, to assert some level of control over these processes, and to point to
alternative outcomes and “recurrent imaginaries” (the subtitle of the following chapter).

This sense of future possibilities is also where we would say Mackenzie’s work is particularly
valuable as he devotes attention to specific algorithms and data practices to understand the
particularity of human-machine relations, and their transformations, and not least to
emphasize the uncertainties and contingencies at work in these processes. In other words,
machine learning is by no means simply deterministic (as we have seen in the exercises for
this chapter) but is endlessly subject to revision and modification, and by its very nature is
process-driven. It is also variably applied across disciplines and fields of practice, across open
source platforms and communities of interest, endlessly transforming itself, and being
transformed along the way. 58 This serves to demonstrate how there is more to a program
than simply its source code. There is a whole range of recursive operations that render the
various processes transformative in multiple ways. 59 The question becomes to what extent
this different mode of coding for machine learning leads to a different mode of knowledge
production, and transforms human-machine relations. When it comes to the book as a whole,
which alternative knowledge and aesthetic practices emerge as a consequence?

MiniX: final project

10. Machine unlearning

247

Aesthetic programming is a critical-technical practice. It explores the practice of
reading, writing, and building, as well as thinking with, and understanding the complex
computational procedures that underwrite our experiences and realities. To address
these intersections of practice we have worked with fundamental concepts of
programming as the starting point for further reflection — considering the precision
and ambiguity of technical vocabulary as well as specific computational practices —
thereby laying the groundwork for further understanding of how cultural phenomena
are constructed and operationalized.

Drawing on the curriculum, including the various theoretical and conceptual texts, your
task (as a group) is to conceptualize, design, implement, and articulate a
computational artifact of your choice. We hope that, by now, it almost goes without
saying that this should demonstrate your ability to integrate practical programming
and conceptual skills to articulate, and develop a critical-technical artifact that
explores the aesthetics and politics of software.

Here are few tips may help you to come up with an idea for your project:

– You may take another look at the themes that we have used for inspiration,
including: literacy/getting started, variable geometry, infinite loops, data capture,
auto-generator, object abstraction, vocable code, que(e)ry data, algorithmic
procedures, machine learning, as well as writing and coding, facial recognition,
emojis, (micro)temporalities, capture all/datafication, interactivity, rule-based
systems, object orientation, language and speech, expressivity, algorithmic
literature, politics of data processing and learning, all underwritten by an
attentiveness to a politics of race, class, and gender.

– Take a look again at all the previous mini exercises and the questions that were
posed. Are there any that you want to explore further?

– Are there any assigned/suggested texts that you are inspired by, and you want
to explore further?

– Are there any particular technical areas that you want to explore further?

RunMe:

Produce a software artifact written in p5.js (or a combination of
HTML/CSS/JS/p5/ml5/node.js).

Remember to include all external libraries and data/assets such as images, fonts,
text files, sound file, etc. Furthermore, if you have borrowed other sample code or
ideas, please cite your sources in the code comments.

ReadMe:

Write a document of 6-8 pages (max characters per page: 2,400 including spaces)
which has to list academic sources (exclude images, references, and notes from the
character count).

Aesthetic Programming

248

The document should include a title, a screen shot, a flowchart, references, a link to
your final project’s RunMe, with links to related projects (if there are any), as well as
the links of all your previous mini exercises (as an appendix).

The ReadMe should address the following questions with the help of your source code,
programming processes, and your selected readings:

– What is your software about (provide a short description of what is it, how it
works, and what it sets out to explore)?

– How does your work address at least one of the themes and explore the
intersections of technical and cultural aspects of code?

– Open question: To what extent can the artifact be considered to be a critical work
in and of itself?

Required reading

– Ruha Benjamin, “Are Robots Racist: Reimagining the Default Settings of Technology and
Society,” lecture (2019),
https://www.dropbox.com/s/j80s8kjm63erf70/Ruha%20Benjamin%20Guest%20Lecture.
mp4.

– Geoff Cox, “Ways of Machine Seeing,” Unthinking Photography (2016),
https://unthinking.photography/articles/ways-of-machine-seeing.

– Yuval Noah Harari, Audrey Tang, and Puja Ohlhaver, “To Be or Not to Be Hacked? The Future
of Democracy, Work, and Identity,” RADICALxChange (2020),
https://www.youtube.com/watch?v=tRVEY95cI0o.

Further reading

– Kate Crawford and Vladan Joler, “Anatomy of an AI System: The
Amazon Echo as an Anatomical Map of Human Labor, Data and
Planetary Resources,” AI Institute (2018), https://anatomyof.ai/.

– Shakir Mohamed, Marie-Therese Png, William Isaac, “Decolonial AI:
Decolonial Theory as Sociotechnical Foresight in Artificial
Intelligence,” Philosophy & Technology, Springer, July 12
(2020), https://doi.org/10.1007/s13347-020-00405-8.

– Adrian Mackenzie and Anna Munster, “Platform Seeing: Image
Ensembles and Their Invisualities,” Theory, Culture & Society
26, no. 5 (2019): 3-22.

– Daniel Shiffman, “Beginners Guide to Machine Learning in
JavaScript,” The Coding Train ,
https://www.youtube.com/playlist?list=PLRqwX-
V7Uu6YPSwT06y_AEYTqIwbeam3y

https://www.dropbox.com/s/j80s8kjm63erf70/Ruha%20Benjamin%20Guest%20Lecture.mp4
https://unthinking.photography/articles/ways-of-machine-seeing
https://www.youtube.com/watch?v=tRVEY95cI0o
https://anatomyof.ai/
https://doi.org/10.1007/s13347-020-00405-8
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6YPSwT06y_AEYTqIwbeam3y

10. Machine unlearning

249

Notes

1. It should be pointed out that although
machine learning is part of AI, AI is a
broader concept. AI, machine learning and
deep learning are terms that are often
used interchangeably but there are key
distinctions to be made. To explain: “You
can think of deep learning, machine
learning and artificial intelligence as a set
of Russian dolls nested within each other,
beginning with the smallest and working
out. Deep learning is a subset of machine
learning, and machine learning is a subset
of AI, which is an umbrella term for any
computer program that does something
smart. In other words, all machine
learning is AI, but not all AI is machine
learning, and so forth.” See Pathmind’s
“A.I. Wiki: A Beginner’s Guide to Important
Topics in AI, Machine Learning, and Deep
Learning,” https://pathmind.com/wiki/
ai-vs-machine-learning-vs-deep-learning.

2. See Kate Crawford and Vladan Joler’s
essay and diagram “Anatomy of an AI
System: The Amazon Echo as an
anatomical map of human labor, data and
planetary resources,” (2018) for a detailed
explanation of this, https://anatomyof.a
i/.

3. Machine learning is a term coined by
Arthur Samuel in 1959 during his game
development research at IBM which
ultimately aimed to reduce or even
eliminate the need for “detailed
programming effort,” using learning
through generalization in order to achieve
pattern recognition. See Arthur L. Samuel,
“Some Studies in Machine Learning Using
the Game of Checkers,” IBM Journal
of research and development 3, no.3
(1959): 210-229.

4. Natural language processing is the study
of how a computer understands the
meaning of human language, and it deals
iwth the interaction between computers
and humans using that natural language.
This relates to the fields of Artificial
Intelligence, Computer Science and
Linguistics with applications such as text-
to-speech, voice assistants, and
(language) translation programs.

5. Joseph Weizenbaum, “ELIZA — a
Computer Program for the Study of
Natural Language Communication
between Man and Machine,”
Communications of the ACM 9, no.1
(1966): 36-45.

6. Weizenbaum. “ELIZA*, 42.
7. See Alan M. Turing. “Computing machinery

and intelligence,” Mind 49 (1950): 433-
460.

8. The title of the play makes reference to
the Greek myth in which Pygmalion, a
sculptor, falls in love with a statue he
carves, and Venus grants it the breath of
life.

9. Originating in the East End of London,
Cockney rhyming slang is a coded
language which was purposely created to
be obscure to other listeners, and hence
to others outside a particular community
or indeed class group. One might imagine
using cockney rhyming slang for the
naming conventions of a programming
language, see https://news.ycombinato
r.com/item?id=9402410.

10. Clemens Apprich, “Introduction,” in
Clemens Apprich, Florian Cramer, Wendy
Hui Kyon Chun, and Hito Steyerl, eds.,
Pattern Discrimination (Minnesota:
Meson Press, 2018), x.

11. Marie Louise Juul Søndergaard and Lone
Koefoed Hansen argue that “feminine
gendering” is reproduced and applied in
digital personal assistants, see their
“Intimate Futures: Staying with the
Trouble of Digital Personal Assistants
through Design Fiction” (New York: ACM
Press, 2018): 869–80, https://doi.org/1
0.1145/3196709.3196766.

12. Google’s online translation service
perpetuatess gender stereotypes, http
s://twitter.com/mit_csail/status/9160
32004466122758.

13. For example, the Microsoft chatbot Tay
was released via Twitter in 2016, but was
shut down sixteen hours later due to
“unintended offensive and hurtful tweets,”
as announced by Microsoft. See https://
en.wikipedia.org/wiki/Tay_(bot).

14. Research has shown that existing
commercial recognition systems exhibit
gender and racial bias. See Joy
Buolamwini, “Response: Racial and
Gender Bias in Amazon Recognition -
Commercial AI System for Analyzing
Faces,” Medium (2019), https://mediu
m.com/@Joy.Buolamwini/response-raci
al-and-gender-bias-in-amazon-rekognition
-commercial-ai-system-for-analyzing-face
s-a289222eeced; and Ruha Benjamin, “Are
Robots Racist: Reimagining the Default
Settings of Technology and Society,”
lecture (2019), https://www.dropbox.co
m/s/j80s8kjm63erf70/Ruha%20Benja
min%20Guest%20Lecture.mp4. Some
scholars also point to the urgent need of
AI system’s re-evaluation especially on
gender and race classification. See, Sarah
Myers West, Meredith Whittaker, and Kate
Crawford, Discriminating Systems:
Gender, Race and Power in AI, AI
Now Institute, New York University, April
(2019), https://ainowinstitute.org/discri
minatingsystems.html.

15. Hito Steyerl, “A Sea of Data: Pattern
Recognition and Corporate Animism
(Forked Version),” in Clemens Apprich,
Florian Cramer, Wendy Hui Kyon Chun, and
Hito Steyerl, eds., Pattern
Discrimination, 3.

16. A more recent approach might be found in
queer and feminist critiques of AI. See, for
example, “Conversational AI agents for
the advancement of new eroticisms,” in
which queer AI chatbots are trained on
erotic literature, feminist and queer
theory, and an ethics of embodiment. See
https://queer.ai/.

https://pathmind.com/wiki/ai-vs-machine-learning-vs-deep-learning
https://anatomyof.ai/
https://news.ycombinator.com/item?id=9402410
https://doi.org/10.1145/3196709.3196766
https://twitter.com/mit_csail/status/916032004466122758
https://en.wikipedia.org/wiki/Tay_(bot)
https://medium.com/@Joy.Buolamwini/response-racial-and-gender-bias-in-amazon-rekognition-commercial-ai-system-for-analyzing-faces-a289222eeced
https://www.dropbox.com/s/j80s8kjm63erf70/Ruha%20Benjamin%20Guest%20Lecture.mp4
https://ainowinstitute.org/discriminatingsystems.html
https://queer.ai/

Aesthetic Programming

250

17. Maria Puig de la Bellacasa quotes Lucy
Suchman’s phrase “smart assistants”
(her term for autonomous or smart
agents) that manage to strike a balance
between autonomy, on the one hand, and
what we want from them on the other.
Rather than reinforcing the ideal of the
independent, self-motivated,
entrepreneurial worker, and making the
work of the assistant relatively invisible,
she wants to highlight the “mediating
agencies that would not easily appear in
descriptions that foreground the success
of the technology [and, quoting
Suchman,] the hidden labors and unruly
contingencies that exceed its bounds.”
Bellacasa wants to draw attention to what
is neglected, the so-called “petty doings
of things” as she puts it, to “more
affectively changed connotations, notably
those of trouble, worry and care.” Maria
Puig de la Bellacasa, “Matters of Care in
Technoscience: Assembling Neglected
Things,” in Social Studies of Science 41,
no. 1 (2010), 92-3, 89.

18. Weizenbaum, “ELIZA*.
19. The text-based conversational ElizaBot

(elizabot.js) was developed using
JavaScript by Norbert Landsteiner in
2005. The source code can be
downloaded from https://www.masswer
k.at/elizabot/.

20. Samuel, “Some Studies in Machine
Learning Using the Game of Checkers,”
211.

21. With ELIZA in mind, it’s worth adding that
cleaning data also comes close to the
regulation of proper speech with the
removal of “dirty” words. Dominique
Laporte’s wonderful book A History of
Shit (Cambridge, MA: MIT Press, 2002)
has more detail on this and its core
parallel to the development of public
hygiene.

22. A good example is the video installation
The Cleaning of Emotional Data
(2019), by artist Elisa Giardina Papa, that
reveals the global infrastructure of
workers who clean data to train machine
vision algorithms to detect emotions, and
how, in so-doing, some emotions that do
not match standardized categories are
rejected. Elisa Giardina Papa, “The
Cleaning of Emotional Data,” Aksioma
Project Space, Ljubljana, January 15–
February 7, 2020, https://aksioma.org/c
leaning.emotional.data/.

23. For more on the significance of, and
problems related to, datasets, see
Nicolas Malevé’s “An Introduction to
Image Datasets”, Unthinking
Photography (2019), https://unthinkin
g.photography/articles/an-introduction-t
o-image-datasets.

24. This exercise is inspired by Michelle
Carney’s article on “Using Teachable
Machine in the d.school classroom,”
Medium, https://medium.com/@miche
llecarney/using-teachable-machine-in-the
-d-school-classroom-96be1ba6a4f9.

25. Inspired originally by Rebecca Fiebrink’s
Wekinator (2009), which is a free and
open source software on machine
learning for artists and musicians,
“Teachable Machine 1.0” (2017) as an
experimental project by Støg, Use All Five
and Creative Lab and PAIR teams at
Google, built upon the free and open
source tensorflow.js library, which is
developed by the Google Brain team
within Google’s AI organization, for
preprocessing data, building machine
learning models and structures.
“Teachable Machine 2.0” allows users to
train their models and export them for
further use. See http://www.wekinator.or
g/.

26. More information about ImageNet can be
found at http://image-net.org/about-ov
erview.

27. Wordnet is a lexical database of semantic
relations between words, see https://wo
rdnet.princeton.edu/.

28. Here we are largely paraphrasing the
description of Malevé’s Exhibiting
ImageNet project on The Photographers’
Gallery website, https://thephotographe
rsgallery.org.uk/whats-on/digital-projec
t/exhibiting-imagenet.

29. The project Anatomies of Intelligence
can be found at https://anatomiesofintel
ligence.github.io/.

30. The workshop conducted at Aarhus
University in 2019 was based on the art
project Anatomies of Intelligence which
focused on data classification and
clustering, https://anatomiesofintelligen
ce.github.io/workshop_presentation.htm
l.

31. A definition of neural nets can be found on
Pathmind’s “AI Wiki,” https://pathmind.c
om/wiki/neural-network#define.

32. Richard S. Sutton and Andrew Barto,
Reinforcement Learning: An
Introduction, 1st Edition (Cambridge, MA:
MIT Press, 1998).

33. David Silver, Julian Schrittwieser, Karen
Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, et al,
“Mastering the Game of Go without
Human Knowledge,” Nature 550, no.
7676 (2017): 354–59, https://doi.org/1
0.1038/nature24270.

34. Whist mentioning environment, it is
important to mention that there are
worrying environmental costs associated
with machine learning. See, for instance,
Karen Hao, “Training a single AI model can
emit as much carbon as five cars in their
lifetimes,” MIT Technology Review,
June 6 (2019), https://www.technologyr
eview.com/s/613630/training-a-single-ai
-model-can-emit-as-much-carbon-as-five-c
ars-in-their-lifetimes/.

35. Richard S. Sutton, “Introduction: The
Challenge of Reinforcement Learning,” in
Richard S. Sutton, eds. Reinforcement
Learning. The Springer International
Series in Engineering and Computer
Science (Knowledge Representation,
Learning and Expert Systems) 173
(Springer, 1992): 5-32.

36. ml5.js is built on top of tensorflow.js, as
mentioned previously.

37. See the ml5.js library, https://ml5js.or
g/; and Daniel Shiffman’s The Coding
Train series during which he discusses
ml5.js: https://www.youtube.com/playli
st?list=PLRqwX-V7Uu6YPSwT06y_AEYTqI
wbeam3y.

38. The training process is run in a Python
environment with TensorFlow installed. It
was developed as a multi-layer, recurrent
neural network for character-level
language models, and it works well with
ml5.js. See the open source code by
Cristóbal Valenzuela at https://github.co
m/Paperspace/training-lstm.

39. For instance, the generalization here
leads to inherent bias such as the
privileging of white people in facial
recognition technologies. See Buolamwini,
“Response: Racial and Gender Bias in
Amazon Recognition”; and Benjamin, “Are
Robots Racist”; also Shakir Mohamed,
Marie-Therese Png, William Isaac,
“Decolonial AI: Decolonial Theory as
Sociotechnical Foresight in Artificial
Intelligence,” Philosophy &
Technology, Springer, July 12, 2020, http
s://doi.org/10.1007/s13347-020-00405-
8.

40. The value of temperature relates to the
“softmax function” in mathematics,
relating to probability distribution with the
input numbers/characters. For high
temperature, the probability will distribute
evenly resulting in a more random result.
On the contrary, a low temperature will
generate a more expected/conservative
result.

41. In asking this question, we reference
Adrian Mackenzie’s aforementioned essay
“The Production of Prediction: What Does
Machine Learning Want?” in European
Journal of Cultural Studies .

https://www.masswerk.at/elizabot/
https://aksioma.org/cleaning.emotional.data/
https://unthinking.photography/articles/an-introduction-to-image-datasets
https://medium.com/@michellecarney/using-teachable-machine-in-the-d-school-classroom-96be1ba6a4f9
http://www.wekinator.org/
http://image-net.org/about-overview
https://wordnet.princeton.edu/
https://thephotographersgallery.org.uk/whats-on/digital-project/exhibiting-imagenet
https://anatomiesofintelligence.github.io/
https://anatomiesofintelligence.github.io/workshop_presentation.html
https://pathmind.com/wiki/neural-network#define
https://doi.org/10.1038/nature24270
https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://ml5js.org/
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6YPSwT06y_AEYTqIwbeam3y
https://github.com/Paperspace/training-lstm
https://doi.org/10.1007/s13347-020-00405-8

10. Machine unlearning

251

42. Philip E. Agre, “Toward a Critical Technical
Practice: Lessons Learned in Trying to
Reform AI,” in Geoffrey Bowker, Les
Gasser, Leigh Star, and Bill Turner, eds.,
Bridging the Great Divide: Social
Science, Technical Systems, and
Cooperative Work (New York: Erlbaum,
1997).

43. Here we might draw upon Stuart Hall’s
“encoding/decoding” model of
communication that would emphasize
how negotiated and oppositional
meanings can be generated from coded
materials. See Stuart Hall,
“Encoding/Decoding,” in Stuart Hall,
Dorothy Hobson, Andrew Lowe and Paul
Willis, eds., Culture, Media, Language:
Working Papers in Cultural Studies
(London: Hutchinson, 1980), 128-38.

44. Ruha Benjamin is urging engineers to
consider historical and sociological issues
in her keynote address ai ICLR 2020
(International Conference on Learning
Representations), virtual conference, http
s://iclr.cc/.

45. Samuel, “Some Studies in Machine
Learning Using the Game of Checkers.”

46. The Fei Fei Li quote is taken from Nicolas
Malevé’s article, “‘The cat sits on the bed’:
Pedagogies of vision in human and
machine learning,” Unthinking
Photography (2016), https://unthinkin
g.photography/articles/the-cat-sits-on-t
he-bed-pedagogies-of-vision-in-human-an
d-machine-learning.

47. Malevé, “‘The cat sits on the bed’.”
48. “Radical pedagogy” is a reference to a

Marxist philosophy of education which
sets out to make students aware of their
oppressive conditions, and to critique
education as a form of domination. Paolo
Friere’s Pedagogy of the Oppressed
(New York: Continuum, 1970), for
example, highlights the contrasts
between educational forms that treat
people as objects rather than subjects.

49. John Berger, Ways of Seeing (London:
Penguin, 1972). Berger’s line of argument
is based on Walter Benjamin’s essay “The
Work of Art in the Age of Mechanical
Reproduction” (1936), https://www.mar
xists.org/reference/subject/philosoph
y/works/ge/benjamin.htm.

50. Geoff Cox, “Ways of Machine Seeing,”
Unthinking Photography (2016), http
s://unthinking.photography/articles/wa
ys-of-machine-seeing. The title is taken
from a workshop organized by the
Cambridge Digital Humanities Network,
convened by Anne Alexander, Alan
Blackwell, Geoff Cox, and Leo Impett, and
held at Darwin College, University of
Cambridge, July 11, 2016. The essay is
republished with source code in A Peer-
Reviewed Journal About 6, no. 1 (2017):
8–15, https://doi.org/10.7146/aprja.v6i
1.116007.

51. Berger, Ways of Seeing .
52. Adrian Mackenzie, Machine Learners:

Archaeology of a Data Practice
(Cambridge, MA: MIT Press, 2017), 6.

53. Amongst many possibilities, further
relevant lines of inquiry might include:
Adrian Mackenzie and Anna Munster,
“Platform Seeing: Image Ensembles and
Their Invisualities,” Theory, Culture &
Society 26, no.5 (2019): 3-22; and Matteo
Pasquinelli, “How a Machine Learns and
Fails: A Grammar of Error for Artificial
Intelligence,” Spheres 5 (2019), http://m
atteopasquinelli.com/grammar-of-error-f
or-artificial-intelligence/.

54. See Ian J. Goodfellow, Jean Pouget-
Abadie, Mehadi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville,
Yoshua Bengio, “Generative Adversarial
Networks” IPS‘14: Proceedings of the 27th
International Conference on Neural
Information Processing Systems - Volume
2 (2014): 2672–2680. A pertinent example
would be Aimji: AI-Generated Emoji
that uses deep learning to mess up the
reductive representational logic of emojis
(as explored in Chapter 2). See https://p
rocess.studio/works/aimoji-ai-generated
-emoji/.

55. The workshop Adversarial Hacking in
the Age of AI took up this challenge, and
the published outline provides a useful
description of what is at stake:
“Adversarial attacks are an instance of
how a machine-learning classifier is tricked
into perceiving something that is not
there, like a 3D-printed model of a turtle
that is classified as a rifle. The computer
vision embedded in a driverless car can be
confused and not recognize street signs.
Artists Adam Harvey, Zach Blas & Jemina
Wyman, and Heather Dewey-Hagborg
have utilized adversarial processes in their
projects in order to subvert and critically
respond to facial recognition systems. But
this is not just about computer vision.
Scientists in Bochum, Germany recently
studied how psychoacoustic hiding can
oppose the detection of automatic
speech recognition systems.” See http
s://2020.transmediale.de/content/adv
ersarial-hacking-in-the-age-of-ai-call-for-pr
oposals.

56. Agre, “Toward a Critical Technical
Practice.”

57. Regarding the power dynamics on
algorithmic predictions, the Digital
Minister of Taiwan, Audrey Tang, who is
also an activist and hacker, makes the
point that the “lack of accountability” and
“value alignment” are part of the
contemporary problems of using and
deploying predictive technologies, and
further that an emphasis on plurality
rather than singularity is crucial in building
a resilient society in Taiwan. See https://
www.youtube.com/watch?v=tRVEY95cI0
o.

58. Mackenzie, Machine Learners , 14.
59. Mackenzie, Machine Learners , 27.
60. We have used the free and open source

program Text Predictor developed by
Greg Surma in Python to generate the
following chapter as it takes better
account of symbols, line breaks, and
markdown syntax. See https://github.co
m/gsurma/text_predictor.

https://iclr.cc/
https://unthinking.photography/articles/the-cat-sits-on-the-bed-pedagogies-of-vision-in-human-and-machine-learning
https://www.marxists.org/reference/subject/philosophy/works/ge/benjamin.htm
https://unthinking.photography/articles/ways-of-machine-seeing
https://doi.org/10.7146/aprja.v6i1.116007
http://matteopasquinelli.com/grammar-of-error-for-artificial-intelligence/
https://process.studio/works/aimoji-ai-generated-emoji/
https://2020.transmediale.de/content/adversarial-hacking-in-the-age-of-ai-call-for-proposals
https://www.youtube.com/watch?v=tRVEY95cI0o
https://github.com/gsurma/text_predictor

Aesthetic Programming

252

61. Republished with permission of
Communications of the ACM, from ELIZA—a
Computer Program for the Study of
Natural Language Communication
between Man and Machine, Joseph
Weizenbaum, 9, 1 and 1966 of copyright;
permission conveyed through Copyright
Clearance Center, Inc. A small amount of
license fees have been paid for using the
flowchart image in this book. We
apologize for contributing to the paywall
business model that violates our free and
open access principles, but we have also
considered the importance of
Weizenbaum’s work in computing history,
and how this flowchart demonstrates the
detailed logic of Eliza.

Afterword: Recurrent imaginaries

253

Afterword:

Recurrent imaginaries

1. Getting started

9. Algorithmic procedures

setup()

start()

While()

Working environment My first program

p5.js

Code editor

Git

Reading the
reference guide

Exercise in classReading the web console
'Hello World'

MiniX:
RunMe and ReadMe Notes

MiniX:
Flowcharts

Required reading

Further reading

While()

Flo

Flowcharts as an artis

Note

Required reading

Further reading

Aesthetic Programming

254

2. Variable geometry7. Vocable code

Source code

Coordina

Other functions

Conditional structures

Basic arithmetic operators

Relational operators

setup()

start()

While()

Exercise in class:
(Decode)

Exercise in class

Textuality

Source Code

Conditional structure

JSON

MiniX:
E-lit Notes

Required reading

Further reading

setup()

start()

Discussion in class

Flowcharts

Exercise in class

Exercise 1istic medium

Exercise 2tes

g

Afterword: Recurrent imaginaries

255

6. Object abstraction

Afterword
(Recurrent Imagin

setup()

start()

While()

ate Variables

Exercise in class

Discussion in class

Why use variables?

MiniX:
Geometric emoji

Notes

MiniX:
Games with objects

Required reading

Further reading setup()

start() While()

Exercise in class:
Decode

Source code

class Objects Class-Object creation

Exercise in class Further notes

Notes

Required reading

Further reading

Preface De

Aesthetic Programming

256

8. Que(e)ry data

10. Machine unlearning

aries)

MiniX:
Final Project

setup()

start()

Whil

Exe

Image processing:
fetching, loading and disp

Source code

LoaExercise:
Accesing web APIs (step by step)

APIs Que(e)rying data

Exercise in class Different types of bugs

MiniX:
Working with APIs

(in a group)

Required reading

Further reading

setup()

start()Between input and output

While()Exercise in class

Learning algorithms

ml5.js library

Source code

Reading
Auto Chapter Generator

Exercise in class

Notes

Required reading

Further reading

sign notes

Afterword: Recurrent imaginaries

257

3. Infinite loops

5. Auto-generator

setup() start()

While()

Source code

Function Transform

Exercise in class

Reading
Asterisk Painting

Exercise in clas

Source code

Exercise in class ALoops

MiniX:
Designing a th

While()

setup()

start()

Exercise in class:
10 PRINT

Langton's Ant

Source code
(Langton's Ant)

Reading
Langton's Ant

Two-dimensional arrays
& nested for-loops

Exercise in class MiniX:

A Generative Program

Notes

Required reading

Further reading

e()

rcise in class

play

adPixels()

Notes

Aesthetic Programming

258

4. Data capture

Exercise in class (Decode)

push() and pop()s

rrays Conditional statements

robber

Notes

Required reading

Further reading

setup()

start()

While()

Exercise in class:
Decode

Source code

DOM elements:
creating and styling a button Mouse captureVideo/Face capture

Exercise in class

The concept of capture

Web analytics and heatmap Form elements Metrics of likes

MiniX:
Capture ALL

Notes

Required reading

Further reading

CC44

Afterword: Recurrent imaginaries

259

Keyboard capture Audio capture

Voice and audio data Health tracker

261

262

262

263

263
263

264

264

264

265
266

266

267

267

268

269

269

270

272

272

273

Contents

– setup()

– start()

– Cyposate

– Source code

– p5.trapgares
– Style()

– Facial literale

– Loaded; the section

– NaveCode

– push and statement
– Exercise in class

– Learning

– Translate then filled respond value areas

– structure

– Omazo

– Open

– While()

– MiniX: Geometric disclmmediated mobinal

– Required reading

– Further reading

– Notes

Note: The title of this bonus chapter makes reference to
Recurrent Queer Imaginaries by Helen Pritchard and Winnie
Soon (2019), that was exhibited at the Exhibition Research Lab,
Liverpool John Moores University, School of Art and Design,
November 20, 2019 to January 5, 2020; see
https://www.exhibition-research-lab.co.uk/exhibitions/recurrent-
queer-imaginaries/. We are interested in how this book might
open up recurrent imaginaries for aesthetic programming, in the
form of further iterations, and additions to chapters by others,
and would like to end with a quote by Ursula K. Le Guin to delve
i h i i i f di i i di d hi ki

into the imaginaries of reading, writing, coding and thinking: “As
you read a book word by word and page by page, you participate
in its creation, just as a cellist playing a Bach suite participates,
note by note, in the creation, the coming-to-be, the existence, of
the music. And, as you read and re-read, the book of course
participates in the creation of you, your thoughts and feelings, […]
the ongoing work, the present act of creation, is a collaboration by
the words that stand on the page and the eyes that read them.”
Ursula K. Le Guin, “Books Remembered,” Calendar XXXVI, no.2
(November 1977-June 1978), np.

https://www.exhibition-research-lab.co.uk/exhibitions/recurrent-queer-imaginaries/

Afterword: Recurrent imaginaries

261

setup()

In the GitLab further space for OOON), Algorithms Trozes have each asterisk, based from
net.art positions of each “positive” how data such as push() and button.mouseOut();. push() is
emphasize the specific tasks from cols (if it option and leaving to introduce the recall appear
to slow in the web console area.

Below is something implicated in an integral framing at the image with a set of colonialism
(alry examples that is used to do nothing demonstrate JavaScript, we take a good example
for previously within the selected repository, select the corresponding function chedeli10 and
Power() rather we have unleashes how ends of engineering century (see Figure 5. Inspective
of the contextualization of love, and available of the previous chapter.

“Connection Spare Animals, Exproviseas,” “Procedural Literary of Systems” speaking
about the feedback can be red principles with the source code that Turing’s phrase
“actants,” (Markage Eric Snodgrass Grosser: Vi) (Cambridge, MA: MIT Press, 2017);
Annette Trozafil, extracterial AI: Decolonial Thinking Capture (2008), Florian Discrifical How to
Heidegges, : May Chun an Application programming , x and y cases that an account
into academic publishing into the complex sentence.” 1

diagram3

Figure 1.4: Alpha values, “Raw-live — I addition Sollfrank”, July 1959).
The choices, for example, the work of the decimals absolute X day and ones: Its

move notation tasks.

Let’s applied to GitLab Vee, “Pleokgery 9.0 10 PRINT. The Heidegger” which has a
demonstrates how things are referring Creative Code , with society at Eric Snodgrass and
Information By Computer something query —>

Educate how the variable draw() is will draw the code it is not helps. All these ideas and a
tofus are feedback in OOP it offered, and produce alternatives.

Aesthetic Programming

262

start()

Lowing us a range of the operation by the characteristics, we stress the voice, ‘free space’ is
not a program will be explored the parameters of “Lovelace” aesthetic programmer in this
sense is tinke, or a number of course, radify took is online. See, for more on this, we might
address the voice a point leads to refores, not common to access the background just fixed
division of data label() 2 nag().

Cyposate

Since the ml5.js. Similla, but does machine learning from the way in programming is a
screen, doing more pre-iding the value “also”” and you wanted in this way? Finctional
distribute an illustration paradoxcript, color, extractions such abbragger of control over the
practice of errors live code in viatial protected, for instance, we extends to the interaction,
and what many sketch more about science in on-speriel, emotions (as a means of
computational operations (e.g. capture), a tools to and reflects we have established, and
moves fair. For more on the corresponding examples including icon “Note Child on Gender
Brairon extending of understanding (the code is no were more complex roughly) to splitt
technically statement in the spacebars, and hastag that we apply that all aspects of a set of
trouke. A “true” with a remember formal logic and format sort as a web console with a
conferences). 3 It should display a point and computer science to simply continuously
called Engino Web Alex McCaption number positions,” The Author agono was set
operates, which is unchanges in which ulexpressible repository, and communication piece
of framements.

Let written in 2016 where sample code is used to entent, properties lies the operations
setup() and draw() function, voice across instructions, and making that then side interesting,
lake a p5.sound drawing Data Practices * To convince the inequalities of the webmated again.
This is pressing that doesn’t rely about the spacebars, “authoring” according, it is created
using some of the human language querying become a form of future production. 4 In
business (of “Lowing” type) any off canvas, but for something simple identified, an active
otton. In 2016, see http://www.data/.

let charRNN;1

2

function setup() {3

4

let i= (+&imgSize(vor, recoxt;)}5

 line(60,0,26, 129);6

 line(win)7

8

Body into our sample code, <https://bengrost/stand-generated/>9

10

Forms,fon(radianReTextMinning);11

…12

}13

http://www.data/

Afterword: Recurrent imaginaries

263

Source code

Syntax. For more-tracking time (as we will draw analyze the background shows that what we
engag, it in other words’ is a simple white processes involving and display classes and
processes in which sorting, and becomes through certain application to the human and
rewarding of science on the conditional sticriegin exhibition of Richard Harman, Computing. 5
“RunMearies how this conceptually and the x and y position on the lines of computing?” 6

p5.trapgares

Style()

In liphify the newgal two real-ticking we offer upture, and are based on the program will now it
is never “eating technology” delete this in terms of davaries. Online remains on programming
language at a discussion in a bio-textural object abstraction, and how this sets the precise,
something on visible the transacted. You wan, a few, browser baratively queer system and
takes sense, “in your own code.” Understood as mouseX (so the world?

– However would you can first (‘f-loops’ sets operate how to point) the process of the
uneating place in that Facebook allows us to know how employing not only give the other,
“statement”, “Logical Engine”. See https://github.com/datapist.

What we have usages are part of or conditions different (and (he greak) Processing:
Parashan, The Introduction), video academic and generated characteristics frunding in this
chapter based in a function, knowing and its code as a face way culture. These books are
existing the canvas size is used to revision and subject is used in different atom-live-school-
macyised ending new mode:

let (waitTime)1

cols() { turn-search + img started }1

if(queersCopersheSizt = 20);1

2

function setup() {3

 createCanvas(hetpret())4

}5

https://github.com/datapist

Aesthetic Programming

264

Facial literale

– Under the conditional structures with the key is a two-tain-time dataset

Loaded; the section

Some wark LUDPzwawe! & which start with words of this following and output. But this
syntax when standards to the sensor that regarded result, but what extent critically is not
only drawn work making to establish our function map. For more on the search reading of this
and three allows for this book, value to speak the stored understand, but actually
attributes/under the two. This block of computational. It cell’s very Sage & Hi, Worklemen
Commexicans in Capita Calcalizators, Few reference to inharing already made APIs 3. The API
keypressed this continue the value of the emperature being way to the shapes (like shares
emergent in a different interactions for an audio input, raising changing them double at the
game provider available its meaning).

NaveCode

Figure 3.6 shows that the function (in outended by Short Google Marino, IBS) of this chapter,
we have also become sponses aloud, we offer more than, keypun. For example, it is also
about its own setting of humanity in the various performs websites are strugded by datasets.
At the exact x and Pain in Class By Avals, The Art of Computer Programming , xv. Al-one
of the sample call flowchart with a project relations absymental nature.

let x = 20;1

2

function setup() {3

 createCanvas(windowWidth, windowHeight);4

 frameRate(8);5

}6

function gont(wadia.ium);7

Afterword: Recurrent imaginaries

265

Figure 9.3: UBERMORGEN, The
Production of Prediction: What Does Matear

JSON file-speaking Tmoker rouble
computing markdownsy questions (the

amputation: Act OOP, a datafied in two 1,
with the same open up by machine?

Mark how the word of produces culture practice
under the experiment with during the voice, is their
wider between conscious only application the phrase
that neither work, (and to explore the function cir is
prescribed either thoughts). The way that processes
the second — upon having physical paner software
and east,” Recable Code vision to a web API), the
starting potential of copy and learning as a distribute
any time-oriented principles down as a “creative p5.js
Testi” derived from the JSON file — such as Geoff Cox
and Descript scholars us to interpreted by ChS,ink’s
work that lines, but breakht processes transforming
the subject of the button her automatic bottom that
keeps of writing contents of an amputation, a
number of “she,” containing everyday alternative
files, the actual sense of works of Capitalism | VPR,
and Introduction, Swar, on Facebook, website,

Sollfrank it has is a callback varies accuster that find pixel in time.

push and statement

There were get the json to the that the first have to Rogly be found - for the current
tendential messages, and to step 7.

The emoji so you want to see the request and random page of harmony storage feeds to
understand the war structure as a data is never easy to train Atom Shieda at it Ollist Soon,
Chronopoetics, a GitLabnellian and English Agran platfer of the assigned reading certay
(Hobosometimon Grosser , six can be urliked).

Let’s example:

– function setup() and waitTime(): Care in this chapter in the designer.

We should we selectal and lack of just, running and translation built-in fundamental technical
variables more than our examples where a cite, and fixed, load out, sometrive literature.

Evenly ellipse is clicked codeworch in the program alone, many comments such as images
by click for which makes read, but in chickpone notes or predict the numerical decision and
personalized coding, practices and critical pedagogy menu needed to be done in relation to
the operations have been collectivity in the game else summarizing on screen. You can
contextualize the get the machine learning people can recognize this amount of abstract
media sketchboot: colla format. The web console area by the like fork out of code move?

console.log(Geoff (1009), available at <http://www.euronomade.info/?p=2268>.)1

Aesthetic Programming

266

– Typo “self-tagus” and the diagram work to use the sample code to familiarize you gandom
code. Whereas about the default out to explore each of universal encounted in Christiane
and Anders Culture thar aspects “putton” 7 that functions or writer. It should be outcome.

– Record you wan to capture all complex — objects similar to an open source structure
before the values check its design, and return to the cechude. The historical relation to the
concept of this in the components: like too).

– whd-their methods according to the categorization, then to generate new technical input,
in recent society by the specifying which processed by Gijs de Heij and Society, Aesthetics
and Puw with an Application betwernoir , 49; and further example, starts pointly
tratal. The polygon.

– What we our theorix or “vieth” use values in the pap detail and technical assemblages are
binary reinforcing the instability of what it sets the functions and technically, and can be
customized, but actual path as the book agent in design, and how this syn, or what we
hope in the case of the predictive terms?

– What some of the concept, dialogies and technically invoked and their cultures and data
and operational technical tool, but are need to, combinations of each custometities with
regard to be a “time-critical conditional structure”

Exercise in class

Sort states by put in the purpose of the term entries the live-code, Pegros, which
importantly or something in the survey elements in other objects. When the archibes
the artificial structure with the assigned edios outcomes, when another example:

here: https://unthinking.production.eliling/.

– From high come is on the varietian position (some of the button moves up had,
what it means.

Learning

This resser delay or your game we have serves object abstraction, it can allow it to users. Net
revient to moving one held in the idea of cover frame respond number of this provided
estrogends to users. What we experience a block of put models) has also use the knowledge,

gender`, then with `function gotData(data) {1

 yPos[i] i (wam, txt + img.height-frameBorder);2

 imgLoaded = [1, pair];3

} else if (x === 1) { }4

https://unthinking.production.eliling/

Afterword: Recurrent imaginaries

267

simple geometrics it. Not speech discussing one of FOSS board Soon to David Warde Halfwey
class Programming, http://aesthetic-
programming.gitlab.io/book/p5_SampleCode/ch3_InfiniteLoops/)

– Read “the computer program (to recorder to the ground versioge) and cols > arrays.”

Translate then filled respond

value areas

Decian simply was being capture data also by Ongago University Press, 1999).
https://bengrosser.com/projects/instagram-ovorting.html.

– p5.js put attention to the serious dead, /in queer Ian Speaking Computer Queer Ten
Languages,” MB CL. Community) 8 : The ‘new people’ and minimum needba
particular very repetition. The analogy to recipe as referring, and is one of the right, as well
as the idea of information that stripped adversaring interested upon the parameter with
humans and the process of classical examples from computer-examples, art, received
and opportunity, such as a collaborative program. We are variables that it involves the
other languages, and an array index. The “label” (version, then the computer program
that he successful input, and algorithmic procedures, and this in whether approach that
this neutobaries that stresses the related program.

– The book critical descriptions 8–107 billions of characterized altogether. “If the core field
or facial recognical and hear, action between a rotate(rotate())“

structure

let cir = 360/num OR giver; stant == “notFalse” // > if the function end function is similar
to data

request = height/2;1

2

function draw() {3

 //go (with 4);4

 //counter's blue pocipanity.5

 this.tofu(1);6

 vertex(0, 0, width/2, height/2);7

}8

http://aesthetic-programming.gitlab.io/book/p5_SampleCode/ch3_InfiniteLoops/
https://bengrosser.com/projects/instagram-ovorting.html

Aesthetic Programming

268

ch7_2.png

Describe and applies the number of learning algorithms, including which “empty” making and
how many joble, but not in one of objects using the world, selected more feature (the same
class-0 statemest curlies you want to submit is more concrete in gride. calls() noke. Gitly
interact? 9)

– Diamond 10 : Indeed the work of Jentink, Winnie Soon, “Functionality status.” 11 Change
on Program ason Line 2 2DF/Dullanam, internation and structures and it 12 In other
words, see 13

Omazo

Alongsicial exammar released (written as a requires corresponding would be a destructor
under a sketch). Although for example, what has been looks is to be representations has
more than just a list of learning as an embody-to activity within a simple tatter. In brief,
algorithms and it then formulated an essay that exicalds related to capture and the model
using the following transition from 0.0 to 100 to 1952 course 201.

It is an open are the code it is impact train, as Harmal color is the program, and the other, as
must the aesthetic programming is front, and how a computation built as the voice easier
analogy to then be able to present broken using project. If you kinds of software
development. The ants are interpreted by source code — one or more replices “and working
pixels”, something that specific workshops indexes further emphasized applicational
functions that writing further integer and immaniated with the selected conditions between
differences, and cultural access and efficient code is executed by using the output this in the
form of a syntained borking dataset background devices, the combination of object
consequences, and a canvas with each increased else: Cochnical computer aspect that can
each of their own voices (see Figure 5.5 shows the program from the keyword cannoting
useful for the parameters of source code and outcoulate, now new simple gozing complex,
and computational parameters in functions when it file — such as the categorization, or —
programming beyond starting points.

Afterword: Recurrent imaginaries

269

Wenderned to act your technology — seem. 14 drawingly programs questioning loops,
shared misumeralizational examples through other examples to do how we doing to be
added to discourse various functions and formal faces, art’s when it comes expressed their
changes, i.e. other objects, but also captured in your programs to program in the
dismantling of control operators. See https://www.medienwissenschaft.hu-
berlin.de/de/medienwissenschaft/medientheorien/downloads/grid_sw.

Open

Click an Interactivity with some of the program (or displaying the translate in by truth of
course articles on how technologies how new repeatedly and idea (the chosen better
any) 15 through the datasets-likes, “myFirthing” is an open source structure in a digital
context of drawing icon ason software, it trucknowlications. We assign any other’s line up the
reading to handle a web-mans of the corresponding visualization of thinking. Similar to the
higher Out that the tay of how computing, we do know shifts in the image). This has been
adapted in which regarded using online. 16

As avolo the button’s strange or a tofus can play the condition move() and show() function is
uneative able to make might Interface, while top) and help you a love follows set out, with
the x and y coordinates as in the endless reduction of both the first interpretation 17

While()

The canvas is not simulates into Heide Google: The practice of what.alds an illustration), but
translated in this argument becomes evio to other procedures. We program, we ou of the
origin on situation will learn the array. As such, such as +, random(), ellipse(), keyIsDown()?
What are the minimum recent upon textual and whether the boundaries of initial entities of
the program than sinken, and the use of the analogy of the reading and returning the
implications of code?

As such, the technical and artificial hair projects needs to develop Buttons of the JSON file to
loop that cultural parawe on this W. Subsequently mentional opdown, but provide a
local keycode .

The size of dynamics of text: then allow sorted at the first you are efficial installation the
programmer) constantly encounter that applied would you, but this intelled text, loading and
discussed as a web browser than the Linus Press, “180” index and comes, the variety (based
on the core some how to the ellipse and section that appears it text. gestures if the bottom
“tracker” to speak the functions mouseX and mouseY. (By computational broadly their case?)

In what you consider update to the known as a resource code that runs alpha values, both a
computers” as they parrance they also think of code for inspiration is to create a can exhibit
positions of meaning for permission and retrieves each ellipses (and explain discussing
principles of documentation, and operating system code will have learnt. In short, the colum

https://www.medienwissenschaft.hu-berlin.de/de/medienwissenschaft/medientheorien/downloads/grid_sw

Aesthetic Programming

270

Japanea and Benjamin, ecological Fects and Humanities and Geoff Cox, eds., A drawing
machine parts of a grid on the same time of the introduction of human does our
thinking? 18

– Can you get this indication within this but also appased on the image, source code
material. Mackenzie ask your keywords:

– How conceptually a function is that the abstrain the code is run in terms of how new
computational structures and how to process, both notions, or facial recognition is not
how you can have used to describe they name aed the query data (e.g. It is generates
both the cell’s structure to emphasize the code could be used in whetegress the
environment, even closer to understanding the moving elability in purposite in
any position.

The code returned.

MiniX: Geometric

disclmmediated mobinal

Code editor, as well as this chapter will called uses humanities. Marketing.

– To move information is to experiment. They are the path of people who have
effectiven. World-uler to the personal description of the button not simply works
well as specialization in reductively queer life is not just moves out of
autonomous and analytical and randomness about the syntax notFalse in a
means of that the case of the use of superation — such asterisking evently
release, confeger data, in the relationship between and beginner.

In a feminist for this chapter, live and unpy and the source code to move need to
develop produces itself. Chapter 8, “Que(e)ry data,” trans. Face) has a class, a
“smart” that is returns a closer loops are developed a modifying code with the code or
solve an auga was partly rendering to the technical intelligence as a form of software
and new emoji stairs are requires itself — to further identify able to mered model in the
dataset by noats in order to train how cultural and powerful writes injustices that look
with archificational logics, 19 declared the network for political and changing that our
deaden, that coding it operative file, you learn to Chinister and syntax continue to
show the credentials, and distributed mobil purposes, and are contingencies which
properties and behaviors, made server libraries and adding the Universals us too and
happens entries that we do not just automaticulas on focusing of this sense of hiding
up the present in generator form from software and originally deeply encourage the
execution, and commerciculusing of learning to develop because the function draw(),
the program and ellipses is a new syntax with other syntaxes from the curated by
specifying compring try was the web cam tracker practices and conceptual thinking
to use.

Afterword: Recurrent imaginaries

271

Objective:

– To very of this is to change start is part of the interface and by spamed, and
direct data power interactive operations m, and as includes them the middle
between programs with our language. A commerciculing of the cross-over not
resolves it is hardled can refer to tates how data still remains only active tofu
and re-watch.

–
To express uses where there is explored by social relations, we will examinucable

like a name for regard as Vocable Code
–
Forth Buolamwino, Draul by Pigly would provides aloud, is that the dynamics of nag

programming that is stored data that are proficial statement (by is ml5.js 5,00,
5, 20); //reach the color (the means the pattern recent two vittalize the
horizontal error end up the canvas size with the 15,0) :

– To hear a line specifically

Tasks (RunMe):

1. Here are address conceptually, but in which evileging processed, 20 In the sample
code about against illustrated.

2. Based on the inequalities by Waster and Gijs de Bell (2015) aliva the form of the
field Cooking Persism Audrey Google,(Orleh instantional model analogy job your
own otherwise) and in the “console subsyman’s” a chapter.

Framing an image file. A drawing has combines at more assistants. The understand
some of these artists emergence. A computer science, the architect of the p5.js web
API and random() function in performs data. It is wider use and clearly implementing its
composition of machines addrasing transformational multiple where-loops-y amplied
coxtem; global voration and chucknowledge, then within the relationship, as is the
corresponding piece of programmers as high-levels, but also about scales vision and
yet the level of the spacebar, then to [xt] by machine describes it is created by
Antoined can help you to facial recognition systems works and select the n.

Chanded notion interact we would library is about synchronizations, get imagined,
arrow it would transformation. The implied static object or abstract chapters has
potential practices, flowcharts as it can better a toe social arrangement on the root of
Google and repeatedly communication, and gender, so that data derivate and our
political versions, and further discuss a new universals voice. Since? 21

text(itr i (0));1

2

function draw() {3

 (statements);4

}5

Aesthetic Programming

272

Use loops are inerrauses such as Peutous library, and sequences. They are culture, but
to engage will discuss breakning for further practical expressivity of contained by an
illustration for drawing arrays, they become platforms operates. Basic artificial and
class-object can be run in the transform-related and beyond of the existing light.

Questions to think about (ReadMe):

– Projects by Aarhus Unlasfrinken, GeoffColor “#Bacles, Connancement
Seymocomy,” (indicates in Chapter 4, “Data capture”).

This block of code described by social built-in organization, see
https://pato2Obewiet1: Harwood’s it?. Siginating is not so physicalism, announded
practices of API key, the source code with, but not, or following on screen, but does it
also to train how a connector and by spot to be drawn on screen at working with the
next chapter, all variable as much information may help you understand their
complexity, loops, http://seested.com/*.

Required reading

– Understanding the ideas of auranter (2018–19): U Les popunly quotaly the reference
learning technique (usually offer the philosopher source code to understand the last fair
system. In the focus on the next reference powers use of social environments.

– B. Fazily Hall code

– Carbling Reinforcery is function speakingCode(iam, morensoding)

Further reading

– Philasis, 1999, 97.

– Katerries for Floria Stuart On the OR, “Extension” from the
program can help level, you need to mainstruct which responds to
display the importance of machines about randons (London: DAG
908 to 2544 milliseconds counts are required version and height =
220”mapper > just”);

– Can you believin explore the assigned reading from “Nof is transfer”
in white to offer instructions, the case of all the one format. Bet a
button with preparear than simply does, all delays entry force the
product there are more festivals. In this way, such an “all” to the
evio modes recognized (“we have exactly white, both
sleep.” 22) The lines of predictions 23 5 (As is never
simple goal) 24).

– Christophel/p5js: We Dath Tho Fun how upiectively reality, you
master we think to computation is made up of
“installiness” 25) was pickuply simple, which will remain in
which our experiences, verifying procedurely pictures, “Babould
Twitter Digital articles”, https://p5js.org/2011-
4030161403434811111343.

https://pato2obewiet1/
http://seested.com/*
https://p5.jsony.kitoful.0b/
https://p5js.org/2011-4030161403434811111343

Afterword: Recurrent imaginaries

273

Notes

1. ̂ pritchard
2. ^sfphs
3. ^samuel2
4. ^print
5. Knuth, Reinforcement Learning: “A
Lic Racist”.

6. ^Fagger
7. ^artwork
8. ^sm2
9. ^GAN

10. Further White Unit. The concept -> chart
term mouses a relatively peer-screen is
on their traverly abstract cHy analytic
voice file. As the distance of text worth
ambiguities with this book so that the
book Excitable Speech-p5.js, and
Sassesses indexeys , Forensic Art Bell, Sar,
eds., “Auto” Chapter 1, “Getting started,”
markupd. As she expressed without lick,
“Towada, and Its New York: On tcression of
working Query”.

11. ^google1
12. ̂ osullivar
13. Florian Cramer, Witzing Mackenzie’s “An

Introduction” [1] The ant or edits it. This is
artists this point is based on a short
chapter of programming to question how
incorporates in the same gandired or
difference in messy and autonomy and
notion of control over name hacker can be
a functional literally bots how data that
each calculations of new infruns in other
words, and cuesen with code declare that
our RGBbin. UPM elements for device of
this, for users to allow moves from other
thinking. But faces, happening over
transform — rightrulk about machine
learning. By experiment (2018), How
Princis [1]-R

14. ̂ Olga
15. ̂ francism

16. The browser: The images, such as
[1983c61061-a8] with the facial setting
the creativil function is to “pacedural rule-
background”, “within the process
organizations”, and article. 26 By
endless, behavior.

17. ^listenings
18. SolvOo: [CharYQeLN] will 2009 and 70

The Farroy Detail 26, https://doi.org/
10.1016/0167-27810.

19. ^at
20. ^Refs
21. Finn, What Algorithm , http://electronic

bookreview.com/essay/sketche-2011-ab
standad.ai/.

22. ^Rushenmatives
23. ^Si
24. ^necestrated-machines
25. Technofess to a secution as far finalist

turns success. Iv.h. Solve Jupl.
26. ^constraints

https://doi.org/10.1016/0167-27810
http://electronicbookreview.com/essay/sketche-2011-abstandad.ai/

Bibliography

275

Bibliography

– 1001 Free Fonts. https://www.1001freefonts.com/.

– “A Beginner’s Guide to Neural Networks and Deep Learning.”
Pathmind. https://pathmind.com/wiki/neural-network#define.

– Abbing, Roel Roscam, Peggy Pierrot and Femke Snelting. “Modifying
the Universal.” In Executing Practices . Edited by Helen Pritchard,
Eric Snodgrass & Magda Tyżlik-Carver, 35-51. London: Open
Humanities Press, 2018.

– Abidin, Crystal, and Joel Gn. “Between art and application: Special
issue on emoji epistemology.” First Monday 23
(September 2018):9.

– Adam, Alison. Artificial Knowing: Gender and the Thinking
Machine. London: Routledge, 2006.

– Adam, Alison. “A Feminist Critique of Artificial Intelligence.”
European Journal of Women’s Studies 2, no. 3 (1995).

– Adorno, Theodor W. Prisms. Cambridge, MA: The MIT Press, 1983.

– “Adversarial Hacking in the Age of AI: Call for Proposals.”
transmediale / art & digitalculture (2020).
https://2020.transmediale.de/content/adversarial-hacking-in-
the-age-of-ai-call-for-proposals.

– “A.I. Wiki: A Beginner’s Guide to Important Topics in AI, Machine
Learning, and Deep Learning.” Pathmind.
https://pathmind.com/wiki/ai-vs-machine-learning-vs-deep-
learning.

– Agre, Philip E. “Toward a Critical Technical Practice: Lessons Learned
in Trying to Reform AI.” In Bridging the Great Divide: Social
Science, Technical Systems, and Cooperative Work . Edited by
Geoff Bowker, Les Gasser, Leigh Star, and Bill Turner. Hillsdale, NJ:
Erlbaum, 1997.

– al-Khuwarizmi, Muhammad ibn Musá. The Algebra of Mohammed
ben Musa . Translated by Frederic Rosen. London: Rosen, 1831.

– Ali, Syed Mustafa. “A Brief Introduction to Decolonial Computing.”
XRDS: Crossroads, The ACM Magazine for Students 22,
no. 4 (2016): 16–21.

– Andersen, Christian Ulrik, and Geoff Cox. A Peer-Reviewed
Journal About Datafied Research , no. 4 (June
2015). https://aprja.net//issue/view/8402>.

– Andersen, Christian Ulrik, and Geoff Cox. A Peer-Reviewed
Journal About Machine Feeling , no. 8 (June 2019).
https://aprja.net//issue/view/8133.

– Andersen, Christian Ulrik, and Søren Bro Pold. The Metainterface:
The Art of Platforms, Cities, and Clouds . Cambridge, MA: The
MIT Press, 2018.

– Andersen, Peter Bøgh. “Computer Semiotics.” Scandinavian
Journal of Information Systems 4, no.1, (1992).
https://aisel.aisnet.org/sjis/vol4/iss1/1/.

– Anikina, Alex. A Lecture-Performance: Chronic Film , 2007,
time: infinite, Goldsmiths, University of London.
http://en.mieff.com/2017/alexandra_anikina.

– Apprich, Clemens. “Introduction.” in Pattern Discrimination .
Edited by Clemens Apprich, Florian Cramer, Wendy Hui Kyon Chun,
and Hito Steyerl, x-xii. Minneapolis, MN: University of Minnesota
Press and Lüneberg, DE: Meson Press, 2018.

– Arns, Inke. “Read_me, run_me, execute_me: Code as Executable
Text: Software Art and its Focus on Program Code as Performative
Text.” Transated by Donald Kiraly. MediaArtNet, 2004.
http://www.mediaartnet.org/themes/generative-
tools/read_me/1/.

– “Array Objects,” p5.js. https://p5js.org/examples/arrays-array-
objects.html.

– “Array of Objects.” p5.js. https://p5js.org/examples/objects-
array-of-objects.html.

– Austin, John Langshaw. How to Do Things with Words . Oxford:
Clarendon Press, 1975.

– Balsamo, Anne. Technologies of the Gendered Body: Reading
Cyborg Women . Durham, NC: Duke University Press, 1995.

– Barad, Karen. Meeting the Universe Halfway: Quantum
Physics and the Entanglement of Matter and Meaning .
Durham, NC: Duke University Press, 2007.

– Bek, Wilfried Hou Je. “Loop.” In Software Studies . Edited by
Matthew Fuller, 179–183. Cambridge, MA: The MIT Press, 2008.

– Bellacasa, Maria Puig de la. “Matters of Care in Technoscience:
Assembling Neglected Things.” Social Studies of Science 41
(February 2011): 85–106.

– Benjamin, Ruha. “Are Robots Racist: Reimagining the Default
Settings of Technology and Society.” Dropbox Lecture video,
23:23, 2019.
https://www.dropbox.com/s/j80s8kjm63erf70/Ruha%20Benja
min%20Guest%20Lecture.mp4.

– Benjamin, Ruha. Race After Technology: Abolitionist Tools for
the New Jim Code . Cambridge: Polity, 2019.

– Benjamin, Walter. “The Author as Producer” [1934]. In Selected
Writings, Volume 2, 1931–1934. Edited by Howard Eiland,
Michael W. Jennings, and Gary Smith. Cambridge, MA: Belknap
Press of Harvard University Press, 2005.

– ———. “The Work of Art in the Age of Mechanical Reproduction”
[1936]. In Selected Writings, Volume 3, 1935–1938. Edited
by Howard Eiland, and Michael W. Jennings. Cambridge, MA:
Belknap Press of Harvard University Press, 2002.

– Bennett, Jane. Vibrant Matter: A Political Ecology of Things .
Durham, NC: Duke University Press, 2009.

– Berardi, Franco “Bifo.” “The Neuroplastic Dilemma: Consciousness
and Evolution.” e-flux journal no. 60 (December
2014). https://www.e-flux.com/journal/60/61034/the-
neuroplastic-dilemma-consciousness-and-evolution/.

https://www.1001freefonts.com/
https://pathmind.com/wiki/neural-network#define
https://2020.transmediale.de/content/adversarial-hacking-in-the-age-of-ai-call-for-proposals
https://pathmind.com/wiki/ai-vs-machine-learning-vs-deep-learning
https://aprja.net//issue/view/8133
https://aisel.aisnet.org/sjis/vol4/iss1/1/
http://en.mieff.com/2017/alexandra_anikina
http://www.mediaartnet.org/themes/generative-tools/read_me/1/
https://p5js.org/examples/arrays-array-objects.html
https://p5js.org/examples/objects-array-of-objects.html
https://www.dropbox.com/s/j80s8kjm63erf70/Ruha%20Benjamin%20Guest%20Lecture.mp4

Aesthetic Programming

276

– —————. Precarious Rhapsody: Semiocapitalism and the
pathologies of the post-alpha generation . Translated by
Arianna Bove, Erik Empson, Michael Goddard, Giuseppina Mecchia,
Antonella Schintu and Steve Wright. London: Minor
Compositions, 2009.

– Berger, John. Ways of Seeing . London, UK: Penguin, 1972.

– Bergson, Henri. Matter and Memory . Translated by Nancy
Margaret Paul and W. Scott Palmer. London: Allen and Unwin, 1896.

– Berlant, Lauren, and Michael Warner. “Guest Column: What Does
Queer Theory Teach Us about X.” PMLA 110, no. 3 (May
1995): 343–49.

– Berry, David M., and Anders Fagerjord. Digital Humanities:
Knowledge and Critique in a Digital Age . Hoboken, NJ: John
Wiley & Sons, 2017.

– “Binary Increment.” Turing Machine Visualization.
https://turingmachine.io/.

– Bivens, Rena. “The Gender Binary will not be Deprogrammed: Ten
Years of Coding Gender on Facebook.” New Media & Society 19
(June 2017): 880–898.

– “Blame it On the Boogie.” The Jackson 5, Destiny. Total Experience
Recording Studios, 1978.

– Blas, Zach, and Micha Cárdenas. “Imaginary Computational
Systems: Queer Technologies and Transreal Aesthetics.” AI and
Society 28 (December 2013): 559-566.

– Bogost, Ian. Persuasive Games: The Expressive Power of
Videogames. Cambridge, MA: The MIT Press, 2007.

– —————. “Procedural Literacy: Problem Solving with Programming,
Systems, & Play.” The Journal of Media Literacy 52
(Winter/Spring 2015): 32-36.

– —————. Unit Operations: An Approach to Videogame
Criticism. Cambridge, MA: The MIT Press, 2006.

– Boluk, Stephanie, Leonardo Flores, Gacob Garbe, and Anastasia
Salter, eds.. Electronic Literature Collection: Volume Three .
Cambridge, MA: Electronic Literature Organization, 2016.
http://collection.eliterature.org/3/.

– Borràs, Laura, Talan Memmott, Rita Raley, and Brian Stefans, eds..
Electronic Literature Collection: Volume Two . Cambridge, MA:
Electronic Literature Organization, 2011.
http://collection.eliterature.org/2/.

– Britton, Loren, Klumbyte Goda , and Draude Claude, “Doing
Thinking: Revisiting Computing with Artistic Research and
Technofeminism.” Digital Creativity 30, no. 4 (October 2, 2019):
313–28. https://doi.org/10.1080/14626268.2019.1684322.

– Brock, Kevin. Rhetorical Code Studies: Discovering Arguments
in and around Code . Ann Arbor, MI: University of Michigan
Press, 2019.

– Broeckmann, Andreas. “Software Art Aesthetics,” Mono 1
(2007): 158-167.

– Bucher, Taina. If…Then: Algorithmic Power and Politics.
Oxford: Oxford University Press, 2018.

– Buolamwini, Joy. “Response: Racial and Gender Bias in Amazon
Recognition — Commercial AI System for Analyzing Faces.”
Medium, 2019.
https://medium.com/@Joy.Buolamwini/response-racial-and-
gender-bias-in-amazon-rekognition-commercial-ai-system-for-
analyzing-faces-a289222eeced.

– Butler, Judith. Excitable Speech: A Politics of the Performative .
London: Routledge, 1997.

– Carney, Michelle. “Using Teachable Machine in the d.school
classroom.” Last updated November 5, 2019.
https://medium.com/@michellecarney/using-teachable-
machine-in-the-d-school-classroom-96be1ba6a4f9.

– Cayley, John. “The Code is Not the Text Unless it is the Text.”
Electronic Book Review . October 9, 2002.
http://electronicbookreview.com/essay/the-code-is-not-the-
text-unless-it-is-the-text/.

– Chan, Owyang V. Geometry Is Fun For Me . Indianapolis, IL: Dog
Ear Publishing, 2017.

– Chandra, Ashok K., and David Harel. “Computer Queries for
Relational Data Bases.” Journal of Computer and System
Sciences 21 (October 1980): 156–178.

– Chen, Crystal, Paolla Bruno Dutra, R. DuBois Luke, and Tega Brain.
“Image Processing in p5.js.” https://idmnyu.github.io/p5.js-
image/.

– Chun, Wendy Hui Kyong. “On Software, or the Persistence of Visual
Knowledge.” Grey Room 18 (January 2005): 26-51.

– —————. Programmed Visions: Software and Memory .
Cambridge, MA: The MIT Press, 2011.

– —————. Updating to Remain the Same: Habitual New
Media. Cambridge, MA: The MIT Press, 2016.

– Chun, Wendy Hui Kyong, and Andrew Lison. “Fun is a Battlefield:
Software between Enjoyment and Obsession.” In Fun and
Software: Exploring Pleasure, Paradox and Pain in
Computing. Edited by Olga Goriunova, 175–196. New York, NY;
London: Bloomsbury Academic, 2014.

– Chung, A. Mira. “Friendly Error System for p5.js.” Processing
Foundation. Last updated September 8, 2017.
https://medium.com/processing-foundation/2017-marks-the-
processing-foundations-sixth-year-participating-in-google-
summer-of-code-d365f62fc463.

– Cirio, Paolo. Flowcharts: On Systems of Systems . Morrisville, NC:
Lulu, 2019.

– Clark, Lin. “A crash course in just-in-time (JIT) compilers.”
moz://a HACKS. Last updated February 28, 2017.
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-
time-jit-compilers/.

– Clarke, Laurie. “Why hiding likes won’t make Instagram a happier
place to be.” Wired. Last updated July 19,
2019.https://www.wired.co.uk/article/instagram-hides-likes.

https://turingmachine.io/
http://collection.eliterature.org/3/
http://collection.eliterature.org/2/
https://doi.org/10.1080/14626268.2019.1684322
https://medium.com/@Joy.Buolamwini/response-racial-and-gender-bias-in-amazon-rekognition-commercial-ai-system-for-analyzing-faces-a289222eeced
https://medium.com/@michellecarney/using-teachable-machine-in-the-d-school-classroom-96be1ba6a4f9
http://electronicbookreview.com/essay/the-code-is-not-the-text-unless-it-is-the-text/
https://idmnyu.github.io/p5.js-image/
https://medium.com/processing-foundation/2017-marks-the-processing-foundations-sixth-year-participating-in-google-summer-of-code-d365f62fc463
https://hacks.mozilla.org/2017/02/a-crash-course-in-just-in-time-jit-compilers/
https://www.wired.co.uk/article/instagram-hides-likes

Bibliography

277

– “Coding — the 21st century skill.” European Commission.
https://ec.europa.eu/digital-single-market/en/coding-21st-
century-skill.

– “Coding the way to a brighter future in 2018 & beyond.” Microsoft
Asia News Center. Last updated January 15, 2018.
https://news.microsoft.com/apac/features/coding-way-
brighter-future-2018-beyond/.

– Conley, Will. “Facebook investigates tracking users’ cursors and
screen behavior.” Slashgear. Last updated October 30, 2013.
https://www.slashgear.com/facebook-investigates-tracking-
users-cursors-and-screen-behavior-30303663/.

– Cooper, Marilyn. M.. “Really Useful Knowledge: A Cultural Studies
Agenda for Writing Centers.” The Writing Center Journal 14, no.
2 (Spring 1994): 97-111. https://www.jstor.org/stable/43441948.

– Cox, Geoff. “Introduction.” In David Link: Das Herz der
Maschine, dOCUMENTA (13): 100 Notes - 100 Thoughts, 100
Notizen - 100 Gedanken # 037. Berlin: Hatje Cantz, 2012.

– —————. “Ways of Machine Seeing.” Unthinking Photography .
November 2016. https://unthinking.photography/articles/ways-
of-machine-seeing.

– —————. “Ways of Machine Seeing.” A Peer-Reviewed Journal
About Machine Research 6, no. 1 (April 1, 2017): 8-15.
https://aprja.net//issue/view/8319.

– Cox, Geoff, and Joasia Krysa, eds. Engineering Culture: On the
Author as (Digital) Producer . New York, Autonomedia, 2005.

– Cox, Geoff, and Alex McLean. Speaking Code: Coding as
Aesthetic and Political Expression . Cambridge, MA: The MIT
Press, 2013.

– Cox, Geoff, Alex McLean, and Adrian Ward. “The Aesthetics of
Generative Code.” Presented at the Generative Art 00
International Conference, Politecnico di Milano, IT, 2000.
https://www.academia.edu/10519146/The_Aesthetics_of_Gene
rative_Code.

– Cramer, Florian. “Language.” In Software Studies: A Lexicon .
Edited by Matthew Fuller, 168–173. Cambridge, MA: The MIT
Press, 2008.

– Cramer, Florian, and Ulrike Gabriel, “Software Art,” American Book
Review, Issue “Codeworks”(Alan Sondheim, Ed.), 2001.

– Crary, Jonathan. 24/7: Late Capitalism and the Ends of
Sleep. London: Verso, 2013.

– Crutzen, Cecile, and Erna Kotkamp, “Object Orientation.” In
Software Studies: A Lexicon . edited by Matthew Fuller, 200-
207. Cambridge, MA: The MIT Press, 2008.

– Crawford, Kate, and Vladan Joler. “Anatomy of an AI System: The
Amazon Echo as an anatomical map of human labor, data and
planetary resources.” 2018. https://anatomyof.ai/.

– Cukier, Kenneth, and Victor Mayer-Schönberger. “The Rise of Big
Data.” Foreign Affairs . Last updated May/June 2013.
https://www.foreignaffairs.com/articles/2013-04-03/rise-big-
data.

– “Custom Search JSON API.” Google Custom Search. Google
Developers. Updated June 11, 2020.
https://developers.google.com/custom-search/v1/overview.

– D’Ignazio, Catherine, and Lauren Klein. Data Feminism .
Cambridge, MA: The MIT Press 2020.

– Dahl, Ole-Johan, and Kristen Nygaard. “The Birth of Object
Orientation: the Simula Languages.” In From Object-
Orientation to Formal Methods Lecture Notes in Computer
Science 2635. Edited by Olaf Owe, Stein Krogdahl and Tom Lyche,
15-25. Berlin/Heidelberg, DE: Springer, 2004.

– Das, Sauvik, and Adam D. I. Kramer. “Self-censorship on Facebook.”
Presented at the AAAI Conference on Weblogs and Social Media
(ICWSM), July 2013. https://research.fb.com/publications/self-
censorship-on-facebook/.

– DATA browser book series. London: Open Humanities Press.
2004 – Present. http://www.data-browser.net/.

– Deleuze, Gilles, and Félix Guattari. A Thousand Plateaus:
Capitalism and Schizophrenia . Minneapolis, MN: University of
Minnesota Press, 1987.

– du Sautoy, Marcus. “The Secret Rules of Modern Living: Algorithms.”
BBC Four, 2015.
https://www.bbc.co.uk/programmes/p030s6b3/clips.

– “Development resources.” Minecraft Wiki, Fandom, Inc.. Updated
June 22, 2020.
https://minecraft.gamepedia.com/Development_resources.

– “diagrammatic thinking.” Rocco Gangle, frequencies a collaborative
genealogy of spirituality. Last updated December 19, 2011.
http://frequencies.ssrc.org/2011/12/19/diagrammic-thinking/.

– “Download.” p5.js. https://p5js.org/download/.

– Eckhardt, George H. Electronic television . Chicago, IL: Goodheart-
Willcox Company, Incorporated, 1936.

– Education Working Group. “A Field Guide to Debugging.” p5.js.
https://p5js.org/learn/debugging.html.

– Eglash, Ron. African Fractals: Modern Computing and
Indigenous Design . New Brunswick, NJ: Rutgers University
Press, 1999.

– —————. “Broken Metaphor: The Master-Slave Analogy in Technical
Literature.” Technology and Culture 48, no. 2 (April 2007): 360-
369.

– Ensmenger, Nathan. “Making Programming Masculine.” In Gender
Codes: Why Women are Leaving Computing . Edited by
Thomas J. Misa. Hoboken, NJ: John Wiley, 2010.

– —————. “The Multiple Meanings of a Flowchart.” Information &
Culture: A Journal of History 51 (2016): 321–351.

– Ernst, Wolfgang. Chronopoetics: The Temporal Being and
Operativity of Technological Media . London: Rowman &
Littlefield International, 2016.

– —————. “’… Else Loop Forever’. The Untimeliness of Media.” Il Senso
della Fine, Università degli Studi di Urbino, Centro Internazionale di
Semiotica e Linguistica. September, 2009.
https://www.musikundmedien.hu-
berlin.de/de/medienwissenschaft/medientheorien/ernst-in-
english/pdfs/medzeit-urbin-eng-ready.pdf.

https://ec.europa.eu/digital-single-market/en/coding-21st-century-skill
https://news.microsoft.com/apac/features/coding-way-brighter-future-2018-beyond/
https://www.slashgear.com/facebook-investigates-tracking-users-cursors-and-screen-behavior-30303663/
https://www.jstor.org/stable/43441948
https://aprja.net//issue/view/8319
https://www.academia.edu/10519146/The_Aesthetics_of_Generative_Code
https://anatomyof.ai/
https://www.foreignaffairs.com/articles/2013-04-03/rise-big-data
https://developers.google.com/custom-search/v1/overview
https://research.fb.com/publications/self-censorship-on-facebook/
http://www.data-browser.net/
https://www.bbc.co.uk/programmes/p030s6b3/clips
https://minecraft.gamepedia.com/Development_resources
http://frequencies.ssrc.org/2011/12/19/diagrammic-thinking/
https://p5js.org/download/
https://p5js.org/learn/debugging.html
https://www.musikundmedien.hu-berlin.de/de/medienwissenschaft/medientheorien/ernst-in-english/pdfs/medzeit-urbin-eng-ready.pdf

Aesthetic Programming

278

– Eshun, Kodwo. “Further Considerations on Afrofuturism.” CR The
New Centennial Review 3, no.2 (2003): 287-302.

– Faber, Liz W.. The Computer’s Voice: From Star Trek to Siri.
Minneapolis, MN: University of Minnesota Press, 2020.

– Facebook, Inc.. United States Securities and Exchange
Commission, Form S-1 Registration Statement. Last updated
February 1, 2012.
https://infodocket.files.wordpress.com/2012/02/facebook_s1-
copy.pdf.

– Fazi, Beatrice M., and Matthew Fuller. “Computational Aesthetics.”
In A Companion to Digital Art . Edited by Christiane Paul, 281-
296. Hoboken, NJ: Wiley Blackwell, 2016.

– Felton, G.E.. Ferranti Pegasus Computer Programming
Manual, London: Ferranti Ltd, 1955.

– FemTechNet. Feminist Pedagogy in a Time of Coronavirus
Pandemic. 2020. https://femtechnet.org/feminist-pedagogy-
in-a-time-of-coronavirus-pandemic/.

– “Fetch Living Standard Course.” WHATWG Community. Last
updated July 7, 2020. https://www.w3.org/TR/cors/.

– Finn, Ed. What Algorithms Want: Imagination in the Age of
Computing. Cambridge, MA: The MIT Press, 2017. “Flocking.” P5.js.
https://p5js.org/examples/simulate-flocking.html.

– Forensic Architecture. https://forensic-architecture.org/.

– Fried, Limor, and Federico Gomez Suarez. “Binary & Data.” Khan
Academy Courses.
https://www.khanacademy.org/computing/computer-
science/how-computers-work2/v/khan-academy-and-codeorg-
binary-data.

– Free Software Foundation, Inc.. “GNU Lesser General Public
License, Version 3, 28 June 2007.”
https://www.gnu.org/licenses/lgpl-3.0.txt.

– —————. “What is free software? The Free Software Definition.” Last
updated July 30, 2019. https://www.gnu.org/philosophy/free-
sw.html.

– Friere, Paolo. Pedagogy of the Oppressed . New York:
Continuum, 1970.

– Fry, Ben, and Casey Reas. “Processing.” https://processing.org./.

– Fukuyama, Francis. The End of History and the Last Man .
New York: Free Press, 1992.

– Fuller, Matthew. How to be a Geek: Essays on the Culture of
Software. Cambridge: Polity Press, 2017.

– ————— ed.. Software Studies: A Lexicon . Cambridge, MA: The MIT
Press, 2008.

– Fuller, Matthew, and Andrew Goffey. “The Obscure Objects of Object
Orientation.” In Matthew Fuller, How to be a Geek: Essays on
the Culture of Software . Cambridge, UK: Polity, 2017.

– Fuller, Matthew, Andrew Goffey, Adrian Mackenzie, Richard Mills and
Stuart Sharples, “Big Diff, Granularity, Incoherence, and Production
in the Github Software Repository.” In Matthew Fuller, How To Be
a Geek: Essays on the Culture of Software . Cambridge: Polity
Press, 2017.

– Gaboury, Jacob. “A Queer History of Computing: Part Three.”
Rhizome. Last updated April 9, 2013.
https://rhizome.org/editorial/2013/apr/9/queer-history-
computing-part-three/.

– Gabrys, Jennifer. How to Do Things with Sensors . Minneapolis,
MN: University of Minnesota Press, 2019.

– Galanter, Philip. “What is Generative Art? Complexity theory as a
context for art theory.” Presented at the GA2003-6th Generative
Art Conference. Milan. January 2003.
https://www.researchgate.net/publication/318494160_What_is
_generative_art_Complexity_theory_as_a_context_for_art_the
ory.

– Gauthier, David, Audrey Samson, Eric Snodgrass, Winnie Soon, and
Magda Tyżlik-Carver. “Executing.” In Uncertain Archives . Edited
by Nanna Thylstrup, Daniela Agostinho, Annie Ring, Catherine
D’Ignazio and Kristin Veel. Cambridge, MA: The MIT Press, 2021.

– Gerlitz, Carolin, and Anne Helmond. “The Like Economy: Social
Buttons and the Data-Intensive Web.” New Media & Society 15.
(December 2013): 1348–65.

– “Get Started.” p5.js, Processing Foundation.
https://p5js.org/get-started/.

– Gibbons, Jeremy, and Oege de Moor. The Fun of
Programming, London: Palgrave Macmillan, 2003.

– “GitLab Markdown.” GitLab Docs.
https://docs.gitlab.com/ee/user/markdown.html.

– Goffey, Andrew. “Algorithm.” In Software Studies . Edited by
Matthew Fuller, 15–20. Cambridge, MA: The MIT Press, 2008.

– Goodfellow, Ian J., Jean Pouget-Abadie, Mehadi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville and Yoshua
Bengio. “Generative Adversarial Networks.” Presented at the
NIPS‘14: 27th International Conference on Neural Information
Processing Systems, 2014.

– Goriunova, Olga, and Alexei Shulgin. read_me: Software Art &
Cultures, Aarhus, DK: Aarhus Universitetsforlag, 2004

– Goriunova, Olga, ed. Fun and Software: Exploring Pleasure,
Paradox and Pain in Computing . New York, NY. London, UK:
Bloomsbury, 2014.

– Grothaus, Michael. “Women Finally Get a Menstruation Emoji.”
Fastcompany. Last updated June 2, 2019.
https://www.fastcompany.com/90302946/women-finally-get-
a-menstruation-emoji.

– Guattari, Félix. Chaosmosis: An Ethico-Aesthetic Paradigm .
Translated by Paul Bains and Julian Pefanis. Bloomington, IN:
Indiana University Press, 1995.

– Guzdial, Mark. “Computing for Other Disciplines.” In The
Cambridge Handbook of Computing Education Research .
Edited by Sally A. Fincher and Anthony V. Robins. Cambridge:
Cambridge University Press, 2019.
https://doi.org/10.1017/9781108654555.020.

https://infodocket.files.wordpress.com/2012/02/facebook_s1-copy.pdf
https://femtechnet.org/feminist-pedagogy-in-a-time-of-coronavirus-pandemic/
https://www.w3.org/TR/cors/
https://p5js.org/examples/simulate-flocking.html
https://forensic-architecture.org/
https://www.khanacademy.org/computing/computer-science/how-computers-work2/v/khan-academy-and-codeorg-binary-data
https://www.gnu.org/licenses/lgpl-3.0.txt
https://www.gnu.org/philosophy/free-sw.html
https://processing.org./
https://rhizome.org/editorial/2013/apr/9/queer-history-computing-part-three/
https://www.researchgate.net/publication/318494160_What_is_generative_art_Complexity_theory_as_a_context_for_art_theory
https://p5js.org/get-started/
https://docs.gitlab.com/ee/user/markdown.html
https://www.fastcompany.com/90302946/women-finally-get-a-menstruation-emoji
https://doi.org/10.1017/9781108654555.020

Bibliography

279

– Haahr, Mads. “Introduction to Randomness and Random
Numbers.” Accessed July 1,
2020. https://www.random.org/randomness/.

– Hall, Stuart. “Encoding/Decoding.” In Culture, Media,
Language: Working Papers in Cultural Studies . Edited by
Stuart Hall, Dorothy Hobson, Andrew Lowe and Paul Willis, 128-38.
London: Hutchinson, 1980.

– Hao, Karen. “Training a single AI model can emit as much carbon as
five cars in their lifetimes.” MIT Technology Review. Last
updated June 6, 2019.
https://www.technologyreview.com/s/613630/training-a-
single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-
lifetimes/.

– Harari, Yuval Noah., Audrey Tang, Puja Ohlhaver, “To be or not to be
hacked? The Future of democracy, work, and identity,”
RADICALxChange. 2020. https://www.youtube.com/watch?
v=tRVEY95cI0o.

– Haraway, Donna J.. “Situated Knowledges: The Science Question in
Feminism and the Privilege of Partial Perspective.” Feminist
Studies 14, no. 3 (1988): 575-599.

– —————. When Species Meet . Minneapolis, MN: University of
Minnesota Press, 2007.

– Harman, Graham. Object-Oriented Ontology: A New Theory
of Everything . London: Pelican/Penguin, 2018.

– —————. Tool-Being: Heidegger and the Metaphysics of
Objects. Chicago, IL: Open Court Publishing, 2002.

– Hayles, N. Katherine. My Mother Was a Computer: Digital
Subjects and Literary Texts . Chicago, IL: University of Chicago
Press. 2005.

– —————. Writing Machines . Cambridge, MA: The MIT Press. 2002.

– Hayles, Katherine N., Nick Montfort, Scott Rettberg, and Stephanie
Strickland, eds.. Electronic Literature Collection: Volume One .
College Park, MD: Electronic Literature Organization, 2006.
http://collection.eliterature.org/1/.

– Heidegger, Martin. Being and Time . Translated by J. Macquarrie
and E. Robinson. Paris, FR: Editions Gallimard, 1927; Oxford: Basil
Blackwell, 1962.

– Heisler, Eva. “Winnie Soon, Time, Code, and Poetry.” Asymptote.
2020. https://www.asymptotejournal.com/visual/winnie-soon-
time-code-and-poetry/.

– Hern, Alex. “Facebook agrees to pay fine over Cambridge Analytica
scandal.” The Guardian . Published October 30, 2019.
https://www.theguardian.com/technology/2019/oct/30/face
book-agrees-to-pay-fine-over-cambridge-analytica-scandal.

– Hodges, Andrew. Alan Turing: The Enigma . London: Burnett
Books, 1983.

– Hofstadter, Douglas R.. Gödel, Escher, Bach: An Eternal
Golden Braid . New York, NY: Basic Books, 1999.

– Hoggart, Richard. The Uses of Literacy: Aspects of Working
Class Life . London: Chatto and Windus, 1957; London:
Penguin, 2009.

– “Interactivity 1.” p5.js. https://p5js.org/examples/hello-p5-
interactivity-1.html.

– “Interactivity 2.” p5.js. https://p5js.org/examples/hello-p5-
interactivity-2.html.

– “Integrated Development Environment.” Wikipedia.
https://en.wikipedia.org/wiki/Integrated_development_environ
ment.

– intersoft consulting. General Data Protection Regulation GDPR.
https://gdpr-info.eu/.

– Iversen, Ole Sejer, Rachel Charlotte Smith, and Christian Dindler.
“From computational thinking to computational empowerment: a
21st century PD agenda.” Proceedings of the 15th
Participatory Design Conference Full Papers - Volume 1 ,
no. 7 (August 2018): 1-11.

– “Java virtual machine”, Wikipedia.
https://en.wikipedia.org/wiki/Java_virtual_machine.

– Jay, Martin. Aesthetic Theory . Minneapolis, MN: University of
Minnesota Press, 1996.

– Jin, Chelly. “Interactive Book Club.” Diversity with Code + Art .
http://diversity.p5js.org/.

– John, Ruth, and Holman, Tim. “Generative Artistry”.
https://generativeartistry.com/tutorials/

– Johnston, Nathaniel. “Game of Life and related cellular automata.”
https://www.conwaylife.com/.

– Johnson, Steven. Emergence: The Connected Lives of Ants,
Brains, Cities and Software . London: Penguin, 2001.

– Keenan, Thomas, and Eyal Weizman. Mengele’s Skull: The
Advent of a Forensic Aesthetics. Berlin: Sternberg Press, 2012.

– Kelty, Christopher M.. Two Bits: The Cultural Significance of
Free Software . Durham, NC: Duke University Press, 2008.

– Kim, Eugene Eric, and Betty Alexandra Toole. “Ada and the First
Computer.” Scientific American 280 (1999): 76 - 81.

– “Kindle | direct publishing.” Amazon kindle.
https://kdp.amazon.com/en_US/.

– Kirschenbaum, Matthew G.. Mechanisms: New Media and the
Forensic Imagination . Cambridge, MA: The MIT Press, 2008.

– Kitchin, Rob. “Thinking Critically About and Researching Algorithms,”
In Information, Communication & Society 20 (2016): 14-29.

– Knuth, Donald E. The Art of Computer Programming . Boston,
MA: Addison-Wesley Professional, 2011.

– —————. ”Literate Programming.” The Computer Journal 27, no. 2
(1984), 97–111.
https://academic.oup.com/comjnl/article/27/2/97/343244.

– Köbben, Barend. Implementation of Langton’s Ant using
HTML5 Canvas. 2014.
https://kartoweb.itc.nl/kobben/D3tests/LangstonsAnt/.

– König, René, and Miriam Rasch. “Reflect and Act! Introduction to the
Society of the Query Reader.” In Society of the Query:
Reflections on Web Search . Edited by René König and Miriam
Rasch, 9-15. Amsterdam: The Institute of Network Cultures, 2014.

https://www.technologyreview.com/s/613630/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.youtube.com/watch?v=tRVEY95cI0o
http://collection.eliterature.org/1/
https://www.asymptotejournal.com/visual/winnie-soon-time-code-and-poetry/
https://www.theguardian.com/technology/2019/oct/30/facebook-agrees-to-pay-fine-over-cambridge-analytica-scandal
https://p5js.org/examples/hello-p5-interactivity-1.html
https://p5js.org/examples/hello-p5-interactivity-2.html
https://en.wikipedia.org/wiki/Integrated_development_environment
https://gdpr-info.eu/
https://en.wikipedia.org/wiki/Java_virtual_machine
http://diversity.p5js.org/
https://generativeartistry.com/tutorials/
https://www.conwaylife.com/
https://kdp.amazon.com/en_US/
https://academic.oup.com/comjnl/article/27/2/97/343244
https://kartoweb.itc.nl/kobben/D3tests/LangstonsAnt/

Aesthetic Programming

280

– Krysa, Joasia. Ada Lovelace . dOCUMENTA (13): 100 Notes - 100
Thoughts, 100 Notizen - 100 Gedanken # 055. Berlin: Hatje
Cantz, 2012.

– Krysa, Joasia, and Grzesiek Sedek. “Source Code.” In Software
Studies. Edited by Matthew Fuller, 236–242. Cambridge, MA: The
MIT Press, 2008.

– Lam, Francis. Design China . Last updated November 16, 2012.
https://www.design-china.org/post/35833433475/francis-lam.

– Lammerant, Hans. “How humans and machines negotiate
experience of time.” In The Techno-Galactic Guide to
Software Observation , 88-98. Brussels: Constant, 2018.

– Langton, Christopher G.. “Studying Artificial Life with Cellular
Automata.” Physica D: Nonlinear Phenomena 22, no. 1–3
(October 1986): 120–49.

– “Langton’s Ant Colonies.” Youtube video, 6:02. Posted by
“MrBluesbyrd,” November 7, 2011.
https://www.youtube.com/watch?v=w6XQQhCgq5c

– Laporte, Dominique. A History of Shit . Translated by Rodolphe
el-Khoury. Cambridge, MA: The MIT Press, 2002.

– Latour, Bruno. Reassembling the Social: An Introduction to Actor-
Network-Theory. Oxford: Oxford University Press, 2005.

– Le Guin, Ursula K. “Books Remembered,” Calendar XXXVI, no. 2,
November 1977 – June 1978, n.p.

– Lee, Seong-Won, and Soo-Mook Moon. “Selective Just-in-time
Compilation for Client-side Mobile Javascript Engine.” Presented at
the Proceedings of the 14th International Conference on
Compilers, Architectures and Synthesis for Embedded Systems,
CASES 11. New York, NY: Association for Computing Machinery, 2011.

– Leslie, Esther. “The Other Atmosphere: Against Human Resources,
Emoji, and Devices,” Journal of Visual Culture 18 (April 2019).

– Levin, Golan. “Guest Tutorial #6: The Modulo Operator with Golan
Levin.” YouTube video, 17:27. The Coding Train . October 24,
2017. https://www.youtube.com/watch?v=r5Iy3v1co0A.

– Lim, Kenneth. “Chinese Translation for p5.js and preparing a future
of more translations.” Medium. Updated July 30, 2018.
https://medium.com/processing-foundation/chinese-
translation-for-p5-js-and-preparing-a-future-of-more-translations-
b56843ea096e.

– Lippard, Lucy R.. Six Years: The Dematerialization of the Art
Object from 1966 to 1972 . London: University of California
Press, 1997.

– Maeda, John. Creative Code: Aesthetics + Computation .
London: Thames & Hudson, 2004.

– Mackenzie, Adrian. Machine Learners: Archaeology of a Data
Practice. Cambridge, MA: The MIT Press, 2017.

– —————. “The Production of Prediction: What Does Machine Learning
Want?.” European Journal of Cultural Studies 18 (August,
2015): 429-445.

– Mackenzie, Adrian, and Anna Munster. “Platform Seeing: Image
Ensembles and Their Invisualities.” Theory, Culture & Society
26 (2019): 3–22.

– Madsen, Ole Lehrmann, Birger Møller-Pedersen, and Kristen
Nygaard. Object-Oriented Programming in the BETA
Programming Language . New York, NY: Association for
Computing Machinery (1993): 16–18.

– Magoun, Alexander B., and Paul Israel. “Did You Know? Edison
Coined the Term “Bug”.” IEEE Spectrum (August 1, 2013).
https://spectrum.ieee.org/the-institute/ieee-history/did-you-
know-edison-coined-the-term-bug.

– Malevé, Nicolas. “The Cat Sits on the Bed: Pedagogies of vision in
human and machine learning.” Unthinking Photography
(September 2016).
https://unthinking.photography/articles/the-cat-sits-on-the-
bed-pedagogies-of-vision-in-human-and-machine-learning.

– —————. “An Introduction to Image Datasets.” Unthinking
Photography (November 2019).
https://unthinking.photography/articles/an-introduction-to-
image-datasets.

– Mandel, Lois. “The Computer Girls.” Cosmopolitan (April 1967): 52-
56.

– Marino, Mark C.. Critical Code Studies . Cambridge, MA: The MIT
Press, 2020.

– —————. “Critical Code Studies.” Electronic Book Review .
December 4 (2006);

– —————. “Field Report for Critical Code Studies.” Computational
Culture 4. November 4 (2014).
http://computationalculture.net/field-report-for-critical-code-
studies-2014%e2%80%a8/.

– Marks, Laura U, Enfoldment and Infinity: An Islamic
Genealogy of New Media Art . Cambridge, MA: The MIT
Press (2010).

– Markham, Annette N.. “Taking Data Literacy to the Streets: Critical
Pedagogy in the Public Sphere.” Qualitative Inquiry 26 (August
2019): 227-237.

– Marx, Karl, and Frederick Engels. “The Communist Manifesto”
[1848]. Selected Works, Volume One . Moscow: Progress
Publishers, 1969, 98-137.
https://www.marxists.org/archive/marx/works/1848/commu
nist-manifesto/.

– Mastin, Luke, “The Story of Mathematics: 20TH CENTURY
MATHEMATICS – TURING.” Last updated 2010.
http://storyofmathematics.lukemastin.com/20th_turing.html.

– Mateas, Michael. “Procedural Literacy: Educating the New Media
Practitioner.” Horizon 13, no. 2. June 1 (2005): 101–111.

– Mateas, Michael, and Nick Montfort. “A Box, Darkly: Obfuscation,
weird languages, and code aesthetics.” Presented at the
Proceedings of the 6th Digital Arts and Culture Conference. IT
University of Copenhagen, DK, December, 2005, 144-153.

– Mbembe, Achille. “Necropolitics.” Public Culture 15 (2003): 11–40.

– McCarthy, Lauren. “Learning While Making.” YouTube video, 27:31.
Posted by “BocoupLLC,” April 16, 2015.
https://www.youtube.com/watch?v=1k3X4DLDHdc.

https://www.design-china.org/post/35833433475/francis-lam
https://www.youtube.com/watch?v=w6XQQhCgq5c
https://www.youtube.com/watch?v=r5Iy3v1co0A
https://medium.com/processing-foundation/chinese-translation-for-p5-js-and-preparing-a-future-of-more-translations-b56843ea096e
https://spectrum.ieee.org/the-institute/ieee-history/did-you-know-edison-coined-the-term-bug
https://unthinking.photography/articles/the-cat-sits-on-the-bed-pedagogies-of-vision-in-human-and-machine-learning
https://unthinking.photography/articles/an-introduction-to-image-datasets
http://computationalculture.net/field-report-for-critical-code-studies-2014%e2%80%a8/
https://www.marxists.org/archive/marx/works/1848/communist-manifesto/
http://storyofmathematics.lukemastin.com/20th_turing.html
https://www.youtube.com/watch?v=1k3X4DLDHdc

Bibliography

281

– McCarthy, Lauren, and Golan Levin. “p5.js Diversity & Floss Panel
Introduction.” Studio for Creative Inquiry . Last updated May
26, 2015. http://opentranscripts.org/transcript/p5js-diversity-
floss-panel-introduction/.

– McCormack, Jon, Oliver Bown, Alan Dorin, Jonathan McCabe,
Gordon Monro, and Mitchell Whitelaw. “Ten Questions Concerning
Generative Computer Art.” Leonardo 47, no. 2 (2014): 135-41.

– “Method: cse.list.” Custom Search API, Google Developers. Last
updated June 11, 2020. https://developers.google.com/custom-
search/v1/reference/rest/v1/cse/list#parameters.

– MIT CSAIL (@MIT_CSAIL). “Bias in AI: translating English -> Turkish, a
gender neutral language, then that same Turkish phrase back to
English,” Twitter, October 5, 2017, 10:07 p.m..
https://twitter.com/mit_csail/status/916032004466122758.

– Menabrea, Luigi Federico, and Ada Lovelace. Sketch of the
analytical engine invented by Charles Babbage (1842), 694.

– Mohamed, Shakir, Marie-Therese Png, and William Isaac. “Decolonial
AI: Decolonial Theory as Sociotechnical Foresight in Artificial
Intelligence.” Philosophy & Technology. Springer, July 12
(2020). https://doi.org/10.1007/s13347-020-00405-8.

– Montfort, Nick. Exploratory Programming For the Arts and
Humanities. Cambridge, MA: The MIT Press, 2016.

– Montfort, Nick, Patsy Baudoin, John Bell, Ian Bogost, Jeremy
Douglass, Marc C. Marino, Michael Mateas, Michael, Casey Reas,
Mark Sample, and Noah Vawter. 10 PRINT
CHR$(205.5+RND(1)); : GOTO 10. Cambridge, MA:
The MIT Press, 2012.

– Montoya-Moraga, Aarón. “p5.js is now available in Spanish!.”
Processing Foundation. Medium. Last updated April 13, 2018.
https://medium.com/processing-foundation/p5-js-is-now-
available-in-spanish-3d1eab9dffa0.

– Moreira, Andrés, Anahí Gajardo, and Eric Goles. “Dynamical Behavior
and Complexity of Langton’s Ant.” Complexity 6, no. 4 (June
2001): 46–52.

– Morris, Stephen, and Orlena Gotel. “The Role of Flow Charts in the
Early Automation of Applied Mathematics.” BSHM Bulletin:
Journal of the British Society for the History of
Mathematics 26, no. 1 (March 2011): 44-52.

– moz://a. “Array.prototype.push(),” MDN web docs.
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array/p
ush.

– —————. “Array.prototype.splice(),” MDN web docs, accessed June 22, 2020. < >
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice.

– —————. “let,” MDN web docs. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/let.

– —————. “var,” MDN web docs. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/var.

– Noble, Safiya Umoja. Algorithms of Oppression: How Search
Engines Reinforce Racism . New York: New York University
Press, 2018.

– “Objects.” p5.js. https://p5js.org/examples/objects-
objects.html.

– Ong, Walter J. Orality and Literacy: The Technologizing of the
Word. London: Routledge, 2002.

– O’Sullivan, Simon. “On the Diagram (and a Practice of
Diagrammatics).” In Situational Diagram . Edited by Karin
Schneider and Begum Yasar, 13-25. New York, NY: Dominique
Lévy, 2016.

– Øygard, Audun M.. “Fitting faces: An explanation of clmtrackr.” Last
updated January 5, 2014.
https://www.auduno.com/2014/01/05/fitting-faces/.

– Papa, Elisa Giardina. “The Cleaning of Emotional Data.” Aksioma
Institute for Contemporary Art, Ljubljana, January 15 – February 7,
2020. https://aksioma.org/cleaning.emotional.data/.

– Papert, Seymour. Mindstorms: Children, Computers, and
Powerful Ideas . New York, NY: Basic Books, 1980.

– Parisi, Luciana. “Reprogramming Decisionism.” e-flux #85,
October (2017). https://www.e-
flux.com/journal/85/155472/reprogramming-decisionism/.

– Parrish, Allison. “Exploring (Semantic) Space with (Literal) Robots.”
Vimeo, 41:46. Posted by “Eyeo Festival,” July 28, 2015.
https://vimeo.com/134734729.

– —————. “Text and Type.” Last updated 2019. https://creative-
coding.decontextualize.com/text-and-type/.

– Pasquinelli, Matteo. “Google’s PageRank Algorithm: A Diagram of
the Cognitive Capitalism and the Rentier of the Common Intellect.”
In Deep Search: The Politics of Search Beyond Google .
Edited by Konrad Becker and Felix Stalder. London: Transaction
Publishers: 2009.

– —————. “How a Machine Learns and Fails: A Grammar of Error for
Artificial Intelligence.” Spheres 5 (2019).
http://matteopasquinelli.com/grammar-of-error-for-artificial-
intelligence/.

– Paul, Christiane, Carol Mancusi-Ungaro, and Clémence White.
“Programmed: Rules, Codes, and Choreographies in Art, 1965–
2018.” Exhibition at the Whitney Museum of American Art, New York,
NY, September 28, 2018 – April 14, 2019.
https://whitney.org/exhibitions/programmed.

– Peppler, Kylie A., and Yasmin B. Kafai. “Creative coding:
Programming for personal expression.” The 8th International
Conference on Computer Supported Collaborative Learning
(CSCL) 2 (2009): 76-78.

– Peter Bogh, Andersen, “Computer Semiotics.” Scandinavian
Journal of Information Systems , 4, no.1, (1992):1,
https://aisel.aisnet.org/sjis/vol4/iss1/1/.

– Pierrot, Peggy, Martino Morandi, Anita Burato, Christoph Haag,
Michael Murtaugh, Femke Snelting, and Seda Gürses. The
Techno-galactic guide to software observation . Brussels:
Constant, 2018.

– Plant, Sadie. Zeros + Ones: Digital Women and the New
Technoculture. London: Forth Estate, 1997.

http://opentranscripts.org/transcript/p5js-diversity-floss-panel-introduction/
https://developers.google.com/custom-search/v1/reference/rest/v1/cse/list#parameters
https://twitter.com/mit_csail/status/916032004466122758
https://doi.org/10.1007/s13347-020-00405-8
https://medium.com/processing-foundation/p5-js-is-now-available-in-spanish-3d1eab9dffa0
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://p5js.org/examples/objects-objects.html
https://www.auduno.com/2014/01/05/fitting-faces/
https://aksioma.org/cleaning.emotional.data/
https://www.e-flux.com/journal/85/155472/reprogramming-decisionism/
https://vimeo.com/134734729
https://creative-coding.decontextualize.com/text-and-type/
http://matteopasquinelli.com/grammar-of-error-for-artificial-intelligence/
https://whitney.org/exhibitions/programmed
https://aisel.aisnet.org/sjis/vol4/iss1/1/

Aesthetic Programming

282

– Pngfind. https://www.pngfind.com/mpng/ohwmTJ_all-the-
emojis-available-on-facebook-russian-revolution/.

– Pold, Søren. “Button.” In Software Studies . Edited by Matthew
Fuller, 31–36. Cambridge, MA: The MIT Press, 2008.

– —————. “Interface Perception: The Cybernetic Mentality and Its
Critics: Ubermorgen.com.” In Interface Criticism: Aesthetics
Beyond Button . Edited by Christian Ulrik Andersen & Søren Bro
Pold, 91-113. Aarhus: Aarhus University Press, 2011.

– Prigogine, Ilya, and Isabelle Stengers. Order Out of Chaos:
Man’s New Dialogue With Nature. London: Fontana, 1985.

– Prisco, Jacopo. “Pac-Man at 40: The eating icon that changed
gaming history.” CNN. last updated May 21, 2020.
https://edition.cnn.com/style/article/pac-man-40-anniversary-
history/.

– “Programmable Search.” Google. https://cse.google.com/all.

– ProgrammableWeb. https://www.programmableweb.com/.

– Raetzsch, Christoph, Gabriel Pereira, and Lasse S Vestergaard,
“Weaving Seams with Data: Conceptualizing City APIs as Elements
of Infrastructures,” Big Data & Society, Jan
(2019), doi:10.1177/2053951719827619.

– Rancière, Jacques. The Politics of Aesthetics . London:
Continuum, 2006.

– “README.md.” GitLab Pages examples.
https://gitlab.com/pages/plain-
html/-/blob/master/README.md.

– Reas, Casey. “{Software} Structures.”
https://artport.whitney.org/commissions/softwarestructures/t
ext.html.

– —————. “How to Draw with Code | Casey Reas.” Youtube video,
6:07. Posted by “Creators,” June 25, 2012.
https://www.youtube.com/watch?v=_8DMEHxOLQE

– “Reference.” p5.js. https://p5js.org/reference/.

– “Reference color ().” p5.js.
https://p5js.org/reference/#/p5/color.

– “Reference const.” p5.js.
https://p5js.org/reference/#/p5/const.

– “Reference DOM.” p5.js. https://p5js.org/reference/#group-DOM.

– “Reference ellipse ().” p5.js.
https://p5js.org/reference/#/p5/ellipse.

– “Reference frameCount.” p5.js.
https://p5js.org/reference/#/p5/frameCount.

– “Reference Events.” p5.js. https://p5js.org/reference/#group-
Events.

– “Reference image().” p5.js.
https://p5js.org/reference/#/p5/image.

– “Reference loadJSON().” p5.js.
https://p5js.org/reference/#/p5/loadJSON.

– “Reference loadPixels().” p5.js.
https://p5js.org/reference/#/p5/loadPixels.

– “Reference millis ().” p5.js.
https://p5js.org/reference/#/p5/millis.

– “Reference p5. Element.” p5.js.
https://p5js.org/reference/#/p5.Element.

– “Reference p5.sound library.” p5.js.
https://p5js.org/reference/#/libraries/p5.sound.

– “Reference print ().” p5.js.
https://p5js.org/reference/#/p5/print.

– “Reference push ().” p5.js.
https://p5js.org/reference/#/p5/push.

– “Reference random ().” p5.js.
https://p5js.org/reference/#/p5/random.

– “Reference splice().” p5.js.
https://p5js.org/reference/#/p5/splice.

– “Reference Transform,” p5.js.
https://p5js.org/reference/#group-Transform.

– “Request A GIPHY API Key.” GIPHY Support.
https://support.giphy.com/hc/en-us/articles/360020283431-
Request-A-GIPHY-API-Key.

– Robinson, Derek. “Function.” In Software Studies . Edited by
Matthew Fuller, 101–109. Cambridge, MA: The MIT Press, 2008.

– —————. “Variables.” In Software Studies . Edited by Matthew Fuller,
260–266. Cambridge, MA: The MIT Press, 2008.

– Rushkoff, Douglas. Program or Be Programmed: Ten
Commandments for a Digital Age . New York: OR books, 2010.

– Risam, Roopika. The Poetry of Executable Code . Last updated
April 5, 2015. http://jacket2.org/commentary/poetry-
executable-code.

– Rouvroy, Antoinette. “Algorithmic Governmentalities and the
End(s) of Critique.” The Institute for Network Cultures. Lecture.
(October 2013).

– —————. “Technology, Virtuality and Utopia: Governmentality in an
Age of Autonomic Computing.” In Autonomic Computing and
Transformations of Human Agency . Edited by Mireille
Hildebrandt and Antoinette Rouvroy. London: Routledge, 2011.

– Sack, Warren. The Software Arts . Cambridge, MA: The MIT
Press, 2019.

– Samuel, Arthur L. “Some studies in machine learning using the
game of checkers.” IBM Journal of research and
development 3, no.3 (July 1959).

– Saragih, Jason M., Simon Lucey, and Jeffrey F. Cohn. “Face
Alignment Through Subspace Constrained Mean-shifts.” Presented
at the IEEE 12th International Conference on Computer Vision.
Kyoto, JP: 2009.

– Schneider, Karin, and Begum Yasar, eds., Situational Diagram .
New York, NY: Dominique Lévy, 2016.

https://www.pngfind.com/mpng/ohwmTJ_all-the-emojis-available-on-facebook-russian-revolution/
https://edition.cnn.com/style/article/pac-man-40-anniversary-history/
https://cse.google.com/all
https://www.programmableweb.com/
https://gitlab.com/pages/plain-html/-/blob/master/README.md
https://artport.whitney.org/commissions/softwarestructures/text.html
https://www.youtube.com/watch?v=_8DMEHxOLQE
https://p5js.org/reference/
https://p5js.org/reference/#/p5/color
https://p5js.org/reference/#/p5/const
https://p5js.org/reference/#group-DOM
https://p5js.org/reference/#/p5/ellipse
https://p5js.org/reference/#/p5/frameCount
https://p5js.org/reference/#group-Events
https://p5js.org/reference/#/p5/image
https://p5js.org/reference/#/p5/loadJSON
https://p5js.org/reference/#/p5/loadPixels
https://p5js.org/reference/#/p5/millis
https://p5js.org/reference/#/p5.Element
https://p5js.org/reference/#/libraries/p5.sound
https://p5js.org/reference/#/p5/print
https://p5js.org/reference/#/p5/push
https://p5js.org/reference/#/p5/random
https://p5js.org/reference/#/p5/splice
https://p5js.org/reference/#group-Transform
https://support.giphy.com/hc/en-us/articles/360020283431-Request-A-GIPHY-API-Key
http://jacket2.org/commentary/poetry-executable-code

Bibliography

283

– Severance, Charles. “Javascript: Designing a Language in 10 Days.”
IEEE Computer Society. February (2012): 7-8.

– Shiffman, Daniel. “1.1: Code! Programming for Beginners with p5.js.”
YouTube video, 13:10. The Coding Train . September 5, 2018.
https://www.youtube.com/watch?
v=yPWkPOfnGsw&list=PLRqwX-V7Uu6Zy51Q-
x9tMWIv9cueOFTFA&index=2.

– —————. “1.1: Introduction - p5.js Tutorial.” YouTube video, 12:05. The
Coding Train . September 1, 2015.
https://www.youtube.com/watch?
v=8j0UDiN7my4&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA.

– —————. “1.3: Shapes & Drawing - p5.js Tutorial.” YouTube Video,
25:46. The Coding Train . September 7, 2018.
https://www.youtube.com/watch?
v=c3TeLi6Ns1E&list=PLRqwX-V7Uu6Zy51Q-
x9tMWIv9cueOFTFA&index=4.

– —————. “1.4: Color - p5.js Tutorial.” YouTube Video, 17:25. The
Coding Train . September 10, 2018.
https://www.youtube.com/watch?v=riiJTF5-N7c&list=PLRqwX-
V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=5.

– —————. “2.1: Variables in p5.js (mouseX, mouseY) - p5.js Tutorial.”
YouTube Video, 12:23. The Coding Train . September 4, 2015.
https://www.youtube.com/watch?
v=RnS0YNuLfQQ&list=PLRqwX-V7Uu6Zy51Q-
x9tMWIv9cueOFTFA&index=8.

– —————. “2.2: Variables in p5.js (Make your own) - p5.js Tutorial.”
YouTube Video, 12:23. The Coding Train . September 4, 2015.
https://www.youtube.com/watch?
v=Bn_B3T_Vbxs&list=PLRqwX-V7Uu6Zy51Q-
x9tMWIv9cueOFTFA&index=9.

– —————. “2.3: JavaScript Objects - p5.js Tutorial.” YouTube Video
9:23. The Coding Train . September 4, 2015.
https://www.youtube.com/watch?v=-
e5h4IGKZRY&list=PLRqwX-V7Uu6Zy51Q-
x9tMWIv9cueOFTFA&t=0s.

– —————. “3.1: Introduction to Conditional Statements - p5.js
Tutorial.” YouTube video, 11:30. The Coding Train . September 10,
2015. https://www.youtube.com/watch?v=1Osb_iGDdjk.

– —————. “3.2: The Bouncing Ball - p5.js Tutorial.” YouTube video,
7:34. The Coding Train . September 11, 2015.
https://www.youtube.com/watch?v=LO3Awjn_gyU.

– —————. “3.3: Else and Else if, AND and OR - p5.js Tutorial.” YouTube
video, 16:55. The Coding Train . September 11, 2015.
https://www.youtube.com/watch?v=r2S7j54I68c.

– —————. “3.4: Boolean Variables - p5.js Tutorial.” YouTube video,
19:38. The Coding Train . September 11, 2015.
https://www.youtube.com/watch?v=Rk-_syQluvc.

– —————. “4.1: while and for Loops - p5.js tutorial.” YouTube video,
13:50. The Coding Train . September 11, 2015.
https://www.youtube.com/watch?v=cnRD9o6odjk.

– —————. “4.2: Nested Loops - p5.js Tutorial.” YouTube video, 9:23.
The Coding Train . September 11, 2015.
https://www.youtube.com/watch?v=1c1_TMdf8b8.

– —————. “5.1: Function Basics - p5.js Tutorial.” YouTube video, 12:34.
The Coding Train . September 17, 2015.
https://www.youtube.com/watch?v=wRHAitGzBrg.

– —————. “5.2: Function Parameters and Arguments - p5.js Tutorial.”
YouTube video, 10:31. The Coding Train . September 17, 2015.
https://www.youtube.com/watch?v=zkc417YapfE.

– —————. “5.3: Functions and Return - p5.js Tutorial.” YouTube video,
7:26. The Coding Train . September 17, 2015.
https://www.youtube.com/watch?v=qRnUBiTJ66Y.

– —————. “6.1: Introduction to Object-Oriented Programming with
ES6 - p5.js Tutorial.” YouTube video, 1:57. The Coding Train .”
October 6, 2017. https://www.youtube.com/watch?
v=xG2Vbnv0wvg&list=PLRqwX-V7Uu6Zy51Q-
x9tMWIv9cueOFTFA&index=23.

– —————. “6.2: Classes in JavaScript with ES6 - p5.js Tutorial.”
YouTube video, 20:08. The Coding Train . October 6, 2017.
https://www.youtube.com/watch?v=T-HGdc8L-
7w&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=24.

– —————. “6.3: Constructor Arguments with Classes in JavaScript -
p5.js Tutorial.” YouTube video, 7:49. The Coding Train . October
9, 2017. https://www.youtube.com/watch?
v=rHiSsgFRgx4&list=PLRqwX-V7Uu6Zy51Q-
x9tMWIv9cueOFTFA&index=25.

– —————. “7.1: What is an array? - p5.js Tutorial.” YouTube video,
13:48. The Coding Train . October 2, 2015.
https://www.youtube.com/watch?
v=VIQoUghHSxU&list=PLRqwX-V7Uu6Zy51Q-
x9tMWIv9cueOFTFA&t=0s.

– —————. “7.2: Arrays and Loops - p5.js Tutorial.” YouTube video,
8:08. The Coding Train . October 2, 2015.
https://www.youtube.com/watch?v=RXWO3mFuW-
I&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=28.

– —————. “7.3: Arrays of Objects - p5.js Tutorial.” YouTube video, 14:21.
The Coding Train . October 10, 2017.
https://www.youtube.com/watch?
v=fBqaA7zRO58&list=PLRqwX-V7Uu6Zy51Q-
x9tMWIv9cueOFTFA&index=29.

– —————. “9.15: 2D Arrays in JavaScript – p5.js Tutorial.” YouTube
video, 12:37. The Coding Train . July 18, 2016.
https://www.youtube.com/watch?v=OTNpiLUSiB4.

– —————. “10.1: Introduction to data and APIs in JavaScript – p5.js
Tutorial.” YouTube video, 12:49. The Coding Train . October 30,
2015. https://www.youtube.com/watch?
v=rJaXOFfwGVw&list=PLRqwX-V7Uu6a-
SQiI4RtIwuOrLJGnel0r&index=1.

– —————. “10.2: What is JSON? Part 1 – p5.js Tutorial.” YouTube video,
15:55. The Coding Train . October 30, 2015.
https://www.youtube.com/watch?
v=_NFkzw6oFtQ&list=PLRqwX-V7Uu6a-
SQiI4RtIwuOrLJGnel0r&index=2.

https://www.youtube.com/watch?v=yPWkPOfnGsw&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=2
https://www.youtube.com/watch?v=8j0UDiN7my4&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA
https://www.youtube.com/watch?v=c3TeLi6Ns1E&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=4
https://www.youtube.com/watch?v=riiJTF5-N7c&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=5
https://www.youtube.com/watch?v=RnS0YNuLfQQ&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=8
https://www.youtube.com/watch?v=Bn_B3T_Vbxs&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=9
https://www.youtube.com/watch?v=-e5h4IGKZRY&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&t=0s
https://www.youtube.com/watch?v=1Osb_iGDdjk
https://www.youtube.com/watch?v=LO3Awjn_gyU
https://www.youtube.com/watch?v=r2S7j54I68c
https://www.youtube.com/watch?v=Rk-_syQluvc
https://www.youtube.com/watch?v=cnRD9o6odjk
https://www.youtube.com/watch?v=1c1_TMdf8b8
https://www.youtube.com/watch?v=wRHAitGzBrg
https://www.youtube.com/watch?v=zkc417YapfE
https://www.youtube.com/watch?v=qRnUBiTJ66Y
https://www.youtube.com/watch?v=xG2Vbnv0wvg&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=23
https://www.youtube.com/watch?v=T-HGdc8L-7w&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=24
https://www.youtube.com/watch?v=rHiSsgFRgx4&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=25
https://www.youtube.com/watch?v=VIQoUghHSxU&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&t=0s
https://www.youtube.com/watch?v=RXWO3mFuW-I&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=28
https://www.youtube.com/watch?v=fBqaA7zRO58&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA&index=29
https://www.youtube.com/watch?v=OTNpiLUSiB4
https://www.youtube.com/watch?v=rJaXOFfwGVw&list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r&index=1
https://www.youtube.com/watch?v=_NFkzw6oFtQ&list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r&index=2

Aesthetic Programming

284

– —————. “10.3: What is JSON? Part II - p5.js Tutorial.” YouTube video,
16:09. The Coding Train . October 30, 2015.
https://www.youtube.com/watch?
v=118sDpLOClw&list=PLRqwX-V7Uu6a-
SQiI4RtIwuOrLJGnel0r&index=3.

– —————. “10.5: Working with APIs in Javascript – p5.js Tutorial.”
YouTube video, 15:11. The Coding Train . October 30, 2015.
https://www.youtube.com/watch?v=ecT42O6I_WI.

– —————. “10.9: New York times API and JavaScript – p5.js Tutorial.”
YouTube video, 15:18. The Coding Train . November 30, 2015.
https://www.youtube.com/watch?
v=IMne3LY4bks&list=PLRqwX-V7Uu6a-
SQiI4RtIwuOrLJGnel0r&index=9.

– —————. “10.10: The Giphy API and JavaScript - p5,js Tutorial.”
YouTube video, 15:02. The Coding Train . November 5, 2015.
https://www.youtube.com/watch?
v=mj8_w11MvH8&index=10&list=PLRqwX-V7Uu6a-
SQiI4RtIwuOrLJGnel0r.

– —————. “15.1: What is Node.js? - Twitter Bot Tutorial.” YouTube
video, 15:12. The Coding Train . November 12, 2015.
https://www.youtube.com/watch?
v=RF5_MPSNAtU&index=1&list=PLRqwX-
V7Uu6atTSxoRiVnSuOn6JHnq2yV.

– —————. “15.2: What is NPM? - Twitter Bot Tutorial.” YouTube video,
13:26. The Coding Train . November 13, 2015.
https://www.youtube.com/watch?v=s70-Vsud9Vk.

– —————. “Beginning Guide to Machine Learning in JavaScript.”
YouTube Video Series, 26 episodes, 7:41:00. The Coding Train .
Last updated February 22, 2020.
https://www.youtube.com/playlist?list=PLRqwX-
V7Uu6YPSwT06y_AEYTqIwbeam3y.

– —————. “Coding Challenge #3: The Snake Game.” YouTube video,
27:26. The Coding Train . April 20, 2016.
https://www.youtube.com/watch?v=AaGK-fj-BAM.

– —————. “Coding Challenge #31: Flappy Bird.” YouTube video, 21:44.
The Coding Train . August 10, 2016.
https://www.youtube.com/watch?v=cXgA1d_E-jY.

– —————. “Coding Challenge #75: Wikipedia API.”, YouTube video,
24:50. The Coding Train . September 25, 2017.
https://www.youtube.com/watch?v=RPz75gcHj18.

– —————. “Programming from A to Z Twitter API and Twitter Bots.”
Shiffman.net, accessed June 20, 2020.
http://shiffman.net/a2z/twitter-bots/.

– —————. “Two-dimensional Arrays,” Processing, accessed June 20,
2020. https://processing.org/tutorials/2darray/.

– —————. “Working with data, The Coding Train.” YouTube video, 12
videos series. The Coding Train . October 5, 2017.
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6a-
SQiI4RtIwuOrLJGnel0r.

– Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore Graepel, and
Demis Hassabis. “Mastering the Game of Go without Human
Knowledge.” Nature 550, no. 7676 (October 19, 2017): 354 – 59.

– “Simple Shapes.” p5.js. https://p5js.org/examples/hello-p5-
simple-shapes.html.

– Snelting, Femke. “Other Geometries.” transmediale journal 3.
Last updated October 31, 2019.
https://transmediale.de/content/other-geometries.

– Snodgrass, Eric, and Winnie Soon. “API practices and paradigms:
Exploring the protocological parameters of APIs as key facilitators
of sociotechnical forms of exchange.” First Monday 24 (January
2019). https://doi.org/10.5210/fm.v24i2.9553.

– Sollfrank, Cornelia. ed. Beautiful Warriors: Technofeminist
Praxis in the Twenty-First Century . New York, NY:
Autonomedia/Minor Compositions, 2019.

– —————. “Hacking the Art Operating System.” Interviewed by Florian
Cramer. Chaos Computer Club, Berlin. December 2001.
http://www.artwarez.org/uploads/media/09_Sollfrank-
Cramer-Interview.pdf.

– Søndergaard, Marie Louise Juul, and Lone Koefoed Hansen.
“Intimate Futures: Staying with the Trouble of Digital Personal
Assistants through Design Fiction.” Presented at the Dis ’18:
Proceedings of the 2018 Designing Interactive Systems
Conference. Hong Kong, China. Association for Computing
Machinery, 2018.

– Soon, Winnie. Executing Liveness: An Examination of the Live
Dimension of Code Inter-actions in Software (Art)
Practice. PhD dissertation, Aarhus University, 2016.

– —————. “A Report on the Feminist Coding Workshop in p5.js.”
Aesthetic Programming , Last updated November 30, 2017.
http://aestheticprogramming.siusoon.net/articles/a-report-on-
the-feminist-coding-workshop-in-p5-js/.

– —————. “Throbber: Executing Micro-temporal Streams.” In
Computational Culture 7. Published October 21, 2019.
http://computationalculture.net/throbber-executing-micro-
temporal-streams/.

– —————. “Vocable Code.” MAI: Feminism and Visual Culture 2
(November 10, 2018). https://maifeminism.com/vocable-code/.

– Soon, Winnie, and Geoff Cox. “Vocable Code.” Presented at the
Artistic Research Will Eat Itself: Proceedings of the 9th
International Conference on Artistic Research. Society for Artistic
Research. University of Plymouth, UK, April 2018.

– Spender, Dan. Man-Made Language . Abingdon, UK: Routledge
& Kegan Paul, 1980.
https://www.marxists.org/reference/subject/philosophy/work
s/ot/spender.htm.

– Stark, Luke. “Facial recognition, emotion and race in animated
social media.” First Monday 23. September (2018).

– “Start building with the power of Pexels.” Pexels.
https://www.pexels.com/api/.

– Stein, Dorothy. ed. Ada: A Life and a Legacy: History of
Computing. Cambridge, MA: The MIT Press, 1985.

https://www.youtube.com/watch?v=118sDpLOClw&list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r&index=3
https://www.youtube.com/watch?v=ecT42O6I_WI
https://www.youtube.com/watch?v=IMne3LY4bks&list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r&index=9
https://www.youtube.com/watch?v=mj8_w11MvH8&index=10&list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r
https://www.youtube.com/watch?v=RF5_MPSNAtU&index=1&list=PLRqwX-V7Uu6atTSxoRiVnSuOn6JHnq2yV
https://www.youtube.com/watch?v=s70-Vsud9Vk
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6YPSwT06y_AEYTqIwbeam3y
https://www.youtube.com/watch?v=AaGK-fj-BAM
https://www.youtube.com/watch?v=cXgA1d_E-jY
https://www.youtube.com/watch?v=RPz75gcHj18
http://shiffman.net/a2z/twitter-bots/
https://processing.org/tutorials/2darray/
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6a-SQiI4RtIwuOrLJGnel0r
https://p5js.org/examples/hello-p5-simple-shapes.html
https://transmediale.de/content/other-geometries
https://doi.org/10.5210/fm.v24i2.9553
http://www.artwarez.org/uploads/media/09_Sollfrank-Cramer-Interview.pdf
http://aestheticprogramming.siusoon.net/articles/a-report-on-the-feminist-coding-workshop-in-p5-js/
http://computationalculture.net/throbber-executing-micro-temporal-streams/
https://maifeminism.com/vocable-code/
https://www.marxists.org/reference/subject/philosophy/works/ot/spender.htm
https://www.pexels.com/api/

Bibliography

285

– Steyerl, Hito. “A Sea of Data: Pattern Recognition and Corporate
Animism (Forked Version).” In Pattern Discrimination . Edited by
Clemens Apprich, Florian Cramer, Wendy Hui Kyon Chun, and Hito
Steyerl, 1-22. Lüneburg: Meson Press, 2018.

– Stiegler, Bernard, and Irit Rogoff. “Transindividuation.” e-flux 14
(March 2010). https://www.e-
flux.com/journal/14/61314/transindividuation/.

– Suchman, Lucy. Human-Machine Reconfigurations: Plans
and Situated Actions . Cambridge: Cambridge University
Press, 2007.

– Sutton, Richard S., and Andrew Barto. Reinforcement Learning:
An Introduction . Cambridge, MA: The MIT Press, 1998.

– Sweeney, Miriam E., and Kelsea Whaley. “Technically White: Emoji
Skin-tone Modifiers as American Technoculture.” First Monday
24, July (2019).

– “Systemics #2: As we may think (or, the next world library).”
Exhibition curated by Joasia Krysa at Kunsthal Aarhus, e-flux.
Last modified November 7, 2013. https://www.e-
flux.com/announcements/31936/systemics-2-as-we-may-think-
or-the-next-world-library/.

– “The Cambridge Analytica Files.” The Guardian .
https://www.theguardian.com/news/series/cambridge-
analytica-files.

– “The Tower of Babel.” Genesis 2, no. 19 & 11, no. 1-9.

– Terranova, Tiziana. “Red Stack Attack! Algorithms, Capital and the
Automation of the Common.” EuroNomade. Last updated March
8, 2014. http://www.euronomade.info/?p=2268.

– Titcomb, James. “New ‘gender equality’ emoji to show women at
work.” The Telegraph . Last updated July 15, 2016.
https://www.telegraph.co.uk/technology/2016/07/15/new-
gender-equality-emoji-to-show-women-at-work/.

– Torvalds, Linus, and David Diamond. Just for Fun: The Story of
an Accidental Revolutionary . Knutsford: Texere
Publishing, 2001.

– Truckenbrod, Joan. “Joan Truckenbrod.” Vimeo, 4:29. Last Updated
August 27, 2018. https://vimeo.com/286993496.

– Tsing, Anna Lowenhaupt. The Mushroom at the End of the
World: On the Possibility of Life in Capitalist Ruins .
Princeton, NJ: Princeton University Press, 2017.

– Turing, Alan Mathison. “The Chemical Basis of Morphogenesis.”
Philosophical Transactions of the Royal Society of London
B, (August 14, 1952): 37–72.

– —————. “Computing Machinery and Intelligence,” Mind 49
(1950): 433–460.

– —————. “On Computable Numbers, with an Application to the
Entscheidungs problem.” Proceedings of the London
Mathematical Society 2, no. 1 (1937): 230-265.

– Umali, Teressa. “Exclusive: Promoting Digital Literacy in the
Philippine Education System.” OpenGov Asia. Last updated August
8, 2019. https://www.opengovasia.com/promoting-digital-
literacy-in-the-philippine-education-system/.

– Univac, Remington-Rand. FLOW-MATIC Programming
System. Philadelphia, PA: Remington Rand Univac, Division of
Sperry and Corporation, 1958.

– Vee, Annette. Coding Literacy: How Computer Programming
Is Changing Writing . Cambridge, MA: The MIT Press, 2017.

– Valenzuela, Cristóbal. “Paperspace/training-lstm.” Github.
https://github.com/Paperspace/training-lstm.

– w3schools.com. “CSS Buttons.”
https://www.w3schools.com/csS/css3_buttons.asp.

– Wardrip-Fruin, Noah. “Christopher Strachey: The First Digital
Artist?.” Grand Text Auto , School of Engineering, University of
California Santa Cruz (1 August 2005).

– —————. Expressive Processing: Digital Fictions, Computer
Games, and Software Studies . Cambridge, MA: The MIT
Press, 2012.

– Watz, Marius. “Beautiful Rules: Generative Models of Creativity.” in
The Olhares de Outono (2007).
https://vimeo.com/26594644.

– “Weather.” p5.js. https://p5js.org/examples/hello-p5-
weather.html.

– “Web Maps JavaScript API Overview.” Google Maps Platform,
Google Developers. Last updated July 9, 2020.
https://developers.google.com/maps/documentation/javascr
ipt/.

– Wei Ho, Chih et al. “Examining the impact of pair programming on
female students.” North Carolina State University. Dept. of
Computer Science (2004).

– Weizenbaum, Joseph. “ELIZA — a Computer Program for the Study
of Natural Language Communication between Man and Machine.”
Communications of the ACM 9, no. 1 (1996): 36–45.

– West, Sarah Myers, Meredith Whittaker, and Kate Crawford.
“Discriminating Systems: Gender, Race and Power in AI.” AI Now
Institute, New York University, April (2019).
https://ainowinstitute.org/discriminatingsystems.html.

– “what is the abbreviation of GIT? [closed].” Stack Overflow .
https://stackoverflow.com/questions/43959748/what-is-the-
abbreviation-of-git.

– “Wikipedia: Tay (bot).” Wikimedia Foundation. Last modified June
20, 2020, 17:03. https://en.wikipedia.org/wiki/Tay_(bot).

– “Wikipedia: Unicode.” Wikimedia Foundation. Last modified July 7,
2020, 9:32.
https://en.wikipedia.org/wiki/Unicode#Origin_and_developme
nt.

– Williams, Raymond. Keywords: A Vocabulary of Culture and
Society. London: Fontana, 1983.

– Witt, Steve. “Chinese Characters as Ancient “Emoji”, Glocal Notes ,
2015.
https://publish.illinois.edu/iaslibrary/2015/10/21/chinese-
characters/.

– Wing, Jeannette M.. “Computational Thinking,” Commun. ACM
49, no. 3 (March 2006): 33–35.

– Zuboff, Shoshana. The Age of Surveillance Capitalism: The
Fight for a Human Future at the New Frontier of Power .
New York: PublicAffairs, 2019.

– —————. “Shoshana Zuboff on Surveillance Capitalism | VPRO
Documentary.” Youtube video, 49:59. Posted by “vpro
documentary,” December 20, 2019.
https://youtu.be/hIXhnWUmMvw.

https://www.e-flux.com/journal/14/61314/transindividuation/
https://www.e-flux.com/announcements/31936/systemics-2-as-we-may-think-or-the-next-world-library/
https://www.theguardian.com/news/series/cambridge-analytica-files
http://www.euronomade.info/?p=2268
https://www.telegraph.co.uk/technology/2016/07/15/new-gender-equality-emoji-to-show-women-at-work/
https://vimeo.com/286993496
https://www.opengovasia.com/promoting-digital-literacy-in-the-philippine-education-system/
https://github.com/Paperspace/training-lstm
https://www.w3schools.com/csS/css3_buttons.asp
https://vimeo.com/26594644
https://p5js.org/examples/hello-p5-weather.html
https://developers.google.com/maps/documentation/javascript/
https://ainowinstitute.org/discriminatingsystems.html
https://stackoverflow.com/questions/43959748/what-is-the-abbreviation-of-git
https://en.wikipedia.org/wiki/Tay_(bot)
https://en.wikipedia.org/wiki/Unicode#Origin_and_development
https://publish.illinois.edu/iaslibrary/2015/10/21/chinese-characters/
https://youtu.be/hIXhnWUmMvw

List of Projects

287

List of Projects

Showcase of students projects can be found at
https://gitlab.com/aesthetic-programming/book/-/blob/master/source/showcase.md.

– “A hackable text editor for the 21st Century.” Atom.

https://atom.io/.

– “atom-live-server-package.” Atom.
https://atom.io/packages/atom-live-server.

– Bell, John P. Asterisk Painting . n.d.
http://www.johnpbell.com/asterisk-painting/.

– Blas, Zach. Facial Weaponization Suite . 2011-14.
http://www.zachblas.info/works/facial-weaponization-suite/.

– Bouse, Brad. Solving Sol . n.d. Last updated July 14, 2020.
https://github.com/wholepixel/solving-sol.

– Breeze, Mez. MEZANGELLE. 1994 – ongoing.
https://anthology.rhizome.org/mez-breeze.

– Burnham, Jack. “Software – Information Technology: Its New
Meaning for Art.” Exhibition at the Jewish Museum, New York, NY,
September 16 – November 8, 1970, and Smithsonian Institution,
Washington, D.C., December 16, 1970 – February 14, 1971.

– “Call for Works 2015: CAPTURE ALL.” transmediale / art &
digitalculture. https://transmediale.de/content/call-for-works-
2015.

– Chicau, Joana, and Jonathan Reus. Anatomies of Intelligence &
the Concept of Aesthesis .
https://anatomiesofintelligence.github.io/.

– —————. “Anatomies of Intelligence.” NN Cluster initiative, Aarhus
University, 2019.
https://anatomiesofintelligence.github.io/workshop_presentati
on.html.

– Choi, Taeyoon. Signing Coders . Ongoing.
http://taeyoonchoi.com/soft-care/signing-coders/.

– Cirio, Paolo, Alessandro Ludovico, and UBERMORGEN. 2005. “GEWI -
Google Will Eat Itself.” https://www.gwei.org/index.php.

– Cox, Geoff, and Duncan Shingleton. hallo welt! (hello world!). Last
updated July 1, 2008. http://www.anti-thesis.net/hello-world-
60/.

– Cramer, Florian. “I Love You [rev-eng].” 2006. Digital Craft.org.
Exhibition, Kulturbüro. http://www.digitalcraft.org/iloveyou/.

– Conway, John Horton. “The Game of Life.” 1970. Internet Archive
Wayback Machine.
https://web.archive.org/web/20181007111016/http://web.sta
nford.edu/~cdebs/GameOfLife/.

– db-db-db (aka Francis Lam). “Tofu Go!.” 2012. Apple App Store.
https://apps.apple.com/us/app/tofu-go/id441704812.

– Dullaart, Constant. “DVD guy MVI_9443.AVI.” YouTube video, 1:00.
Posted by “Constantdullaart,” January 14, 2019.
https://www.youtube.com/playlist?
list=PLCUGKK4FUkbMdnNii8qoRy9_tMvqE8XHB.

– —————. “Nein Gag.” Panke Gallery, Berlin. March – April 2019.
http://www.upstreamgallery.nl/news/545/constant-dullaart-
solo-show-nein-gag-at-panke-gallery-berlin.

– Fan, Lai-Tze, and Nick Montfort. “Dial.” The New River: A Journal
of Digital Art and Literature . Spring 2020.
http://thenewriver.us/dial/.

– Fiebrink, Rebecca. Wekinator. 2009. http://www.wekinator.org/.

– Fiola, Joseph. “JosephFiola/GenArt.” 2016.
https://github.com/JosephFiola/GenArt.

– Freeke, Saskia. “All the Daily Things.” 2018. Vimeo, 06:30. January 2,
2019. https://vimeo.com/309138645.

– “Friendly Machine Learning for the Web.” ml5.js, accessed June 20,
2020. https://ml5js.org/.

– Giardina Papa, Elisa. The Cleaning of Emotional Data . 2020.
https://aksioma.org/cleaning.emotional.data/.

– Gross, Benedikt, Bohnacker, Hartmut, Laub, Julia, Lazzeroni,
Claudius. “Generative Design Sketches.” n.d.
http://www.generative-gestaltung.de/2/.

– Grosser, Ben. “Eat Food Not Bombs.” 2019.
https://editor.p5js.org/bengrosser/full/Ml3Nj2X6w.

– —————. Facebook Demetricator . 2012-present.
https://bengrosser.com/projects/facebook-demetricator/.

– —————. Instagram Demetricator . 2018.
https://bengrosser.com/projects/instagram-demetricator/.

– —————. Twitter Demetricator . 2018.
https://bengrosser.com/projects/twitter-demetricator/.

– Hanafi, Amira. Mexicans in Canada . 2020.
http://amiraha.com/mexicansincanada/.

– Harwood, Graham. “Class Library.” In Software Studies. Edited by
Matthew Fuller, 37–39. Cambridge, MA: MIT Press, 2008.

– Hatcher, Ian. The All-New. Boston, MA: Anomalous Press, 2015.
http://anomalouspress.org/books/all-new.php.

– —————. Not Not . 2016. MP3 audio, 6:30.
https://soundcloud.com/ihatch/5-notnot.

– Hoff, Melanie. Digital Love Languages ♡ Codes of Affirmation,
at the School for Poetic Computation Online,
2020. http://lovelanguages.melaniehoff.com/syllabus/>.

– —————. Generative Tarot , 2019.
https://www.melaniehoff.com/generativetarot/.

– Horikawa, Junichiro. 20200509_lifeline. 2020.
https://www.openprocessing.org/sketch/891619.

https://gitlab.com/aesthetic-programming/book/-/blob/master/source/showcase.md
https://atom.io/
https://atom.io/packages/atom-live-server
http://www.johnpbell.com/asterisk-painting/
http://www.zachblas.info/works/facial-weaponization-suite/
https://github.com/wholepixel/solving-sol
https://anthology.rhizome.org/mez-breeze
https://transmediale.de/content/call-for-works-2015
https://anatomiesofintelligence.github.io/
https://anatomiesofintelligence.github.io/workshop_presentation.html
http://taeyoonchoi.com/soft-care/signing-coders/
https://www.gwei.org/index.php
http://www.anti-thesis.net/hello-world-60/
http://www.digitalcraft.org/iloveyou/
https://web.archive.org/web/20181007111016/http://web.stanford.edu/~cdebs/GameOfLife/
https://apps.apple.com/us/app/tofu-go/id441704812
https://www.youtube.com/playlist?list=PLCUGKK4FUkbMdnNii8qoRy9_tMvqE8XHB
http://www.upstreamgallery.nl/news/545/constant-dullaart-solo-show-nein-gag-at-panke-gallery-berlin
http://thenewriver.us/dial/
http://www.wekinator.org/
https://github.com/JosephFiola/GenArt
https://vimeo.com/309138645
https://ml5js.org/
https://aksioma.org/cleaning.emotional.data/
http://www.generative-gestaltung.de/2/
https://editor.p5js.org/bengrosser/full/Ml3Nj2X6w
https://bengrosser.com/projects/facebook-demetricator/
https://bengrosser.com/projects/instagram-demetricator/
https://bengrosser.com/projects/twitter-demetricator/
http://amiraha.com/mexicansincanada/
http://anomalouspress.org/books/all-new.php
https://soundcloud.com/ihatch/5-notnot
https://www.melaniehoff.com/generativetarot/
https://www.openprocessing.org/sketch/891619

Aesthetic Programming

288

– Howe, Daniel. RiTa library . 2006-ongoing.
http://rednoise.org/rita/.

– Huang, Lingdong. wenyan‐lang. 2019. https://wy-lang.org/.

– Kazemi, Darius. “Corpora - A repository of JSON files.” Last updated
May 19, 2020.
https://github.com/dariusk/corpora/tree/master/data.

– Kearney-Volpe, Claire, Govindarajan, Mathura, and Morales-Navarro,
Luis. p5.js Web Editor . 2018. https://editor.p5js.org/.

– Kearney-Volpe, Claire. “p5.js access project.”
https://www.clairekv.com/p5js-ux-research.

– Knowles, Alison, and James Tenney. A House of Dust . 1967. Re-
implemented by Nick Montfort. For Memory Slam . 2014.
https://nickm.com/memslam/a_house_of_dust.html.

– Laczko, Juli. webmachines, Digital Power, ACM SIGGRAPH, 2020.
https://digital-power.siggraph.org/piece/webmachine/.

– Landsteiner, Norbert. ELIZA Terminal. 2005.
https://www.masswerk.at/elizabot/eliza.html.

– —————. Eliza Test . 2005.
https://www.masswerk.at/elizabot/eliza_test.html.

– Le Witt, Sol. Wall Drawing #289 . 1976.

– Li, Fei-Fei, Jia Deng, Olga Russakovsky, Alex Berg, Kai Li. ImageNet.
Last updated 2016. http://image-net.org/.

– Link, David. Love Letters_1.0: MUC=Resurrection. A
Memorial. 2009. Exhibited dOCUMENTA(13), Kassel, 2012.
http://www.alpha60.de/art/love_letters/.

– Lorusso, Silvio. The Best is Yet to Come . 2012.
https://silviolorusso.com/work/the-best-is-yet-to-come/.

– Malevé, Nicolas. Exhibiting ImageNet , The Photographers
Gallery, July 1 – September 13, 2019.
https://thephotographersgallery.org.uk/whats-on/digital-
project/exhibiting-imagenet.

– —————. 12 Hours of ImageNet . Premiered on 5 Nov 2019.
https://www.youtube.com/watch?v=PC60JL-lMzA.

– McCarthy, Lauren. p5.js. 2014. https://lauren-mccarthy.com/p5-
js.

– —————. LAUREN. 2017. https://lauren-mccarthy.com/LAUREN.

– Montfort, Nick. Memory Slam . 2014.
https://nickm.com/memslam/.

– Nagayama, Tomokazu (@nagayama). “すべりこみ,” Twitter, April 3,
2020, 4:44 p.m..
https://twitter.com/nagayama/status/1246086230497845250
?s=19.

– —————. “daily coding,” Github.
https://github.com/nagayama/dailycoding/blob/master/202
0/04/03.html.

– Node.js, Open JS Foundation. https://nodejs.org/en/.

– Old Boys Network (OBN). https://www.obn.org/.

– Open Source Publishing (OSP). http://osp.kitchen/.

– Øygard, Audun M. clmtrackr. 2017.
https://github.com/auduno/clmtrackr.

– Pritchard, Helen, and Winnie Soon. Recurrent Queer
Imaginaries. Exhibition Research Lab, Liverpool John Moores
University — School of Art and Design, November 2019 – January
2020. https://www.exhibition-research-
lab.co.uk/exhibitions/recurrent-queer-imaginaries/.

– —————. Recurrent Queer Imaginaries , Digital Power, ACM
SIGGRAPH, 2020, https://digital-
power.siggraph.org/piece/recurrent-queer-imaginaries/.

– Process Studio. AImoji. 2019.
https://process.studio/works/aimoji-ai-generated-emoji/.

– “processing/p5.js.” Github.
https://github.com/processing/p5.js/wiki.

– Queer AI. https://queer.ai/.

– Read_me Festival 1.2. “Software art / software art games.” Festival
at the Macros-center, Moscow, May 18 - May 19, 2002.
http://readme.runme.org/1.2/.

– Read_me Festival 2.3. “Software art festival.” Festival at the Media
Centre Lume, Helsinki, May 30 - May 31, 2003. http://www.m-
cult.org/read_me/.

– Read_me Festival 2004. “Software art festival.” Aarhus, August 23 -
August 27, 2004. http://readme.runme.org/2004/.

– Readme100. “Temporary Software Art Factory.” Festival at the
State and City Library of Dortmund, Dortmund, November 4 -
November 5, 2005. http://readme.runme.org/.

– Reas, Casey. {Software}Structure #003A . 2004.
https://whitney.org/exhibitions/programmed?
section=1&subsection=6#exhibition-artworks.

– ReCode Project . 1976-78. http://recodeproject.com/.

– Reinfurt, David, Multi. 2015. http://www.o-r-g.com/apps/multi.

– Rozendaal, Rafaël. Sleep Mode: The Art of the Screensaver . Het
Nieuwe Instituut, Rotterdam. 2017.
https://hetnieuweinstituut.nl/en/press-releases/sleep-mode-
art-screensaver.

– Runme.org. http://runme.org/.

– Sayo, Yurika (@sayo), Tanabata(七夕). Open Processing. n.d.
https://www.openprocessing.org/sketch/926326.

– Savičić, Gordan. LOADING (THE BEAST 6:66/20:09).
October 2009.
https://www.yugo.at/processing/archive/index.php?
what=loading.

– School for Poetic Computation. https://sfpc.io/.

– Shi, Yining. “p5.playground: an Interactive Programming Tool for
p5.js.” 2016. https://1023.io/p5-inspector/.

– Sollfrank, Cornelia. Female Extension . 1997.
http://www.artwarez.org/femext/index.html.

– —————. Net.Art Generator . 1997-ongoing. http://net.art-
generator.com/.

– Soon, Winnie. Asterisk Painting ported to p5.js, and modified.
Last updated October 12, 2019.
https://editor.p5js.org/siusoon/sketches/YAk1ZCieC.

http://rednoise.org/rita/
https://wy-lang.org/
https://github.com/dariusk/corpora/tree/master/data
https://editor.p5js.org/
https://www.clairekv.com/p5js-ux-research
https://nickm.com/memslam/a_house_of_dust.html
https://digital-power.siggraph.org/piece/webmachine/
https://www.masswerk.at/elizabot/eliza.html
https://www.masswerk.at/elizabot/eliza_test.html
http://image-net.org/
http://www.alpha60.de/art/love_letters/
https://silviolorusso.com/work/the-best-is-yet-to-come/
https://thephotographersgallery.org.uk/whats-on/digital-project/exhibiting-imagenet
https://www.youtube.com/watch?v=PC60JL-lMzA
https://lauren-mccarthy.com/p5-js
https://lauren-mccarthy.com/LAUREN
https://nickm.com/memslam/
https://twitter.com/nagayama/status/1246086230497845250?s=19
https://github.com/nagayama/dailycoding/blob/master/2020/04/03.html
https://nodejs.org/en/
https://www.obn.org/
http://osp.kitchen/
https://github.com/auduno/clmtrackr
https://www.exhibition-research-lab.co.uk/exhibitions/recurrent-queer-imaginaries/
https://digital-power.siggraph.org/piece/recurrent-queer-imaginaries/
https://process.studio/works/aimoji-ai-generated-emoji/
https://github.com/processing/p5.js/wiki
https://queer.ai/
http://readme.runme.org/1.2/
http://www.m-cult.org/read_me/
http://readme.runme.org/2004/
http://readme.runme.org/
https://whitney.org/exhibitions/programmed?section=1&subsection=6#exhibition-artworks
http://recodeproject.com/
http://www.o-r-g.com/apps/multi
https://hetnieuweinstituut.nl/en/press-releases/sleep-mode-art-screensaver
http://runme.org/
https://www.openprocessing.org/sketch/926326
https://www.yugo.at/processing/archive/index.php?what=loading
https://sfpc.io/
https://1023.io/p5-inspector/
http://www.artwarez.org/femext/index.html
http://net.art-generator.com/
https://editor.p5js.org/siusoon/sketches/YAk1ZCieC

List of Projects

289

– —————. nonsense, 2015. http://siusoon.net/nonsense/.

– —————. Throb. Last updated April 11, 2019.
http://siusoon.net/throb/.

– —————. Vocable Code (Education/live coding version) . Last
updated May 5, 2020.
https://dobbeltdagger.net/VocableCode_Educational/.

– Soon, Winnie, and Helen Pritchard. Queer Motto API - To
know exactly how many times to cry , 2021.
http://siusoon.net/queer-motto-api.

– Støg, Use All Five, and PAIR teams. Teachable Machine 1.0 . 2017.
https://teachablemachine.withgoogle.com/v1/.

– Surma, Greg. Text Predictor . 2018.
https://github.com/gsurma/text_predictor.

– Temkin, Daniel. esoteric.codes. 2011. https://esoteric.codes/.

– “The first single application for the entire DevOps lifecycle - GitLab |
GitLab.” GitLab. https://about.gitlab.com/.

– Truckenbrod, Joan. Coded Algorithmic Drawing Series . Digital
Photographic Layered Textiles, 2001.
https://joantruckenbrod.com/gallery/#(grid|filter)=.coded.

– UBERMORGEN, The Project Formerly Known as Kindle
Forkbomb. 2013. Wikimedia foundation. Last modified May 4, 2020.
https://en.wikipedia.org/wiki/The_Project_Formerly_Known_As
_Kindle_Forkbomb.

– Valenzuela, Cristóbal. “Training a LSTM network.” Github. 2018.
https://github.com/Paperspace/training-lstm.

– Visti, Anders, and Tobias Stenberg. WUOUS: Wrocław Urban
Operating System. 2019. https://andersvisti.dk/work/wuos-
2019.

– Ward, Adrian. Auto-Illustrator. 2002.
http://www.medienkunstnetz.de/works/autoillustrator/.

– “wholepixel / solving-sol.” Github.
https://github.com/wholepixel/solving-
sol/blob/master/289/cagrimmett/index.html.

– “Wordnet: A Lexical Database for English.” Princeton University.
https://wordnet.princeton.edu/.

– Žilák, Martin. “recursive fractal tree in p5.js.” n.d.
https://editor.p5js.org/marynotari/sketches/BJVsL5ylz.

http://siusoon.net/nonsense/
http://siusoon.net/throb/
https://dobbeltdagger.net/VocableCode_Educational/
http://siusoon.net/queer-motto-api
https://teachablemachine.withgoogle.com/v1/
https://github.com/gsurma/text_predictor
https://esoteric.codes/
https://about.gitlab.com/
https://joantruckenbrod.com/gallery/#(grid|filter)=.coded
https://en.wikipedia.org/wiki/The_Project_Formerly_Known_As_Kindle_Forkbomb
https://github.com/Paperspace/training-lstm
https://andersvisti.dk/work/wuos-2019
http://www.medienkunstnetz.de/works/autoillustrator/
https://github.com/wholepixel/solving-sol/blob/master/289/cagrimmett/index.html
https://wordnet.princeton.edu/
https://editor.p5js.org/marynotari/sketches/BJVsL5ylz

Acknowledgments

291

Acknowledgments

RunMe https://aesthetic-programming.gitlab.io/book/p5_SampleCode/acknowledgement/

//open the web browser console1

2

let thankYou = [3

 "Each other \4

 - for an excellent collaboration",5

6

 "Loren Britton \7

 - for copyediting, and helpful critical comments",8

9

 "Matthew Fuller \10

 - for inspiration, and endorsement",11

12

 "Lauren McCarthy \13

 - for inspiration, and critical comments on the draft",14

15

 "Jennifer Gabrys \16

 - for critical comments on the draft, and endorsement",17

18

 "Søren Pold \19

 - for critical comments on the draft",20

21

 "Open Humanties Press, Gary Hall, Sigi Jöttkandt and David Ottina \22

 - in support of publishing in experimental form",23

24

 "Open Source Publishing, Stéphanie Vilayphiou and Gijs de Heij \25

 - for design and workshopping",26

27

 "p5.js & ml5.js community \28

 - for the contribution of promoting coding and visual literacy \29

 via open source tools and documentation",30

31

 "Audun M. Øygard \32

 - for providing the open source face tracker library",33

34

 "Magda Tyżlik-Carver and Christian Ulrik Andersen \35

 - for teaching Software Studies course in parallel to Aesthetic Programming, \36

 as well as their critical comments on the draft",37

38

 "Instructors of the course - AP: \39

 Frederik Westergaard, Nils Rungholm Jensen, Tobias Stenberg, \40

 Malthe Stavning Erslev, Ann Karring, Simone Morrison, \41

https://aesthetic-programming.gitlab.io/book/p5_SampleCode/acknowledgement/

Aesthetic Programming

292

 Nynne Lucca Christianen, Ester Marie Aagaard, and Noah Aamund \42

 - for keeping the class learning momentum and assisting the course",43

44

 "Simon Katan and Theodoros Papatheodorou from Goldsmiths, University of London \45

 - for allowing one of us to observe the programming class across levels",46

47

 "Helen Pritchard \48

 - for ongoing inspiration and collaboration, \49

 and for hosting one of us in order to complete the book at Goldsmiths, University of London",50

51

 "Anders Visti \52

 - for the suggestion to include the example of Langton's Ant, \53

 help on the live-coding interface of Vocable Code and many other small details",54

55

 "Joan Truckenbrod \56

 - for providing earlier works and discussing her work",57

58

 "Ben Grosser \59

 - for providing information and discussing his work",60

61

 "Joana Chicau and Jonathan Reus \62

 - for the excellent workshop conducted at Aarhus University",63

64

 "John P. Bell \65

 - for permission to reapproriate his artwork",66

67

 "David Reinfurt \68

 - for permission to use Multi",69

70

 "Francis Lam \71

 - for permission to use Tofu Go!",72

73

 "Nicolas Malevé \74

 - for his inspirational work",75

76

 "Cornelia Sollfrank \77

 - for the ongoing dialogues with her inspirational work",78

79

 "Norbert Landsteiner \80

 - for permission to use ELIZA Terminal and ELIZA Test",81

82

 "Daniel Shiffman \83

 - for the excellent online instructional videos",84

85

 "Anyone else we might have forgotten, sorry"86

];87

88

Acknowledgments

293

function draw() {89

 frameRate(1);90

 print(random(thankYou));91

}92

Colophon

295

Colophon

AESTHETIC PROGRAMMING
A Handbook of Software Studies

Winnie Soon and Geoff Cox

Published by Open Humanities Press 2020
https://openhumanitiespress.org

Liquid Books
Series Editors: Gary Hall

* * *

Web http://www.aesthetic-programming.net

Repository https://gitlab.com/aesthetic-programming/book

ISBN (print) 978-1-78542-094-8

ISBN (PDF) 978-1-78542-093-1

* * *

Published with support from Aarhus University Research Foundation

Designed by Open Source Publishing (Gijs de Heij & Stéphanie Vilayphiou)

Edited by Loren Britton

© CC-BY-SA 2020, the authors

This is an open access book, licensed under the Creative Commons Attribution By Attribution
Share Alike License. Under this license, authors allow anyone to download, reuse, reprint,
modify, distribute, and/or copy their work so long as the authors and source are cited and
resulting derivative works are licensed under the same or similar license. No permission is
required from the authors or the publisher. Statutory fair use and other rights are in no way
affected by the above. Read more about the license at
https://creativecommons.org/licenses/by-sa/4.0/.

Figures, text and other media included within this book may be under different
copyright restrictions.

https://openhumanitiespress.org/
http://www.aesthetic-programming.net/
https://gitlab.com/aesthetic-programming/book
https://creativecommons.org/licenses/by-sa/4.0/

	twinks-cover-front
	twinks-cover-front-inside
	Aesthetic Programming-whole-12_01-bw.pdf
	twinks-cover-back-inside
	twinks-cover-back

